Telemetry Module MT-723

telemetria pl

Telemetry Module MT-7&3 User Manual

GSM/GPRS Telemetry Module for monitoring and control

Class 1 Telecommunications Terminal Equipment for GSM 850/900/1800/1900

MT-723

v0.90

MT-723

© 2010 Inventia Ltd.

Wszelkie prawa zastrzeżone. Żaden fragment niniejszego dokumentu nie może być powielany lub kopiowany w żadnej formie bez względu na stosowaną technologię – graficzną, elektroniczną lub mechaniczną, włączając fotokopiowanie i/lub zapis cyfrowy, również w systemach przechowywania i wyszukiwania dokumentów – bez pisemnej zgody Wydawcy.

Nazwy produktów wymienionych w niniejszym dokumencie mogą być Znakami Towarowymi i/lub zastrzeżonymi Znakami Towarowymi należącymi do odpowiednich Właścicieli. Wydawca i Autor oświadczają, że nie roszczą do tych znaków towarowych żadnych praw.

Pomimo, że niniejsze opracowanie tworzone było z zachowaniem wszelkiej należytej staranności, zarówno Wydawca jak i Autor nie ponoszą żadnej odpowiedzialności za błędy lub pominięcia w jego treści jak również za straty wynikłe z wykorzystania zawartej w niniejszym opracowaniu informacji lub ewentualnie towarzyszącego jej oprogramowania. W żadnym wypadku Wydawca lub Autor nie będą odpowiedzialni za utratę zysku lub inne straty, w tym handlowe, spowodowane lub rzekomo związane, bezpośrednio lub pośrednio, z niniejszym opracowaniem.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Publisher:

INVENTIA Sp. z o.o. ul. Kulczyńskiego 14 02-777 Warszawa Tel: +48 22 545-32-00 inventia@inventia.pl www.inventia.pl

Version:

0.90 Warsaw, November 2010

MTC Compatibility:

0.90

INDEX

1. MODULE'S DESTINATION	6
2. HOW TO USE THE MANUAL	6
3. GSM REQUIREMENTS	7
4. MODULE'S DESIGN	7
4.1. MODULE'S TOPOGRAPHY	
4.2. RESOURCES	8
4.2.1. Binary inputs	8
4.2.2. Binary outputs	
4.2.3. Analog inputs	
4.2.4. Power output Vo (analog sensors supply)	
4.2.5. Temperature sensor	
4.2.6. Vibration sensor	
4.2.7. Real Time Clock	
4.2.8. Timers	
4.2.9. Counters	
4.2.10. Logger	
4.2.11. GPS (optional)	14
4.3. USB	14
4.4. SIM CARD	15
4.5. POWER SUPPLY	16
4.6. LED INDICATORS	18
4.7. GSM ANTENNA	19
4.8. Pressure sensor	20
4.9. MODULE FLOODING SENSOR	21
4.10. REED SWITCH INPUT	22
4.11. ENCLOSURE	23
5. CONNECTION DIAGRAMS	24
5.1. BINARY INPUTS	24
5.2. Binary outputs	
5.3. Analog inputs	
5.4. GSM ANTENNA	
5.5. GPS ANTENNA	
5.6. SIM CARD INSTALLATION	
5.7. POWER SUPPLY	
5.8. Installation	
6. FIRST START OF THE MODULE	
7. CONFIGURATION	37
7.1. GENERAL INFORMATION	
7.2. PARAMETER GROUPS	
7.2.1. Header group	
7.2.1.1. Module name	
7.2.1.2. Module type	
7.2.1.3. IMEI number	

7.2.1.4. SIM card's number	20
7.2.1.5. Module's serial number	
7.2.1.6. Modem firmware version	
7.2.1.7. Module's firmware version	
7.2.1.8. Configuration file version	
7.2.1.9. Configuration identifier	
7.2.1.10. Last configuration date	
7.2.1.11. Last read device time	
7.2.2. General	
7.2.2.1. PIN code of the SIM card	
7.2.2.2. Configuration password	
7.2.2.3. Configuration password 7.2.2.3. Configuration read disable	
7.2.2.4. Time synchronization	
7.2.2.5. Using GPRS	
-	
7.2.3. SMS	
7.2.3.1. Daily SMS limit	
7.2.3.2. Number of SMS sending retries	
7.2.3.3. SMS in roaming	
7.2.3.4. SMS limit alert	
7.2.3.5. SMS limit alert recipient	
7.2.3.6. Response to empty SMS	
7.2.4. GPRS	
7.2.4.1. APN name	
7.2.4.2. APN user name	
7.2.4.3. APN password	
7.2.4.4. Device identifier	
7.2.4.5. Sender IP address control	
7.2.4.6. Module IP	
7.2.4.7. Spooler IP	
7.2.4.8. GPRS transmission retries number	
7.2.4.9. Transmission timeout	
7.2.4.10. GPRS testing address (ping)	
7.2.4.11. GPRS testing time	
7.2.4.12. GPRS roaming	
7.2.5. Authorized numbers	
7.2.5.1. Number of phone numbers	
7.2.5.2. Number of IP addresses	
7.2.5.3. Phone	
7.2.5.4. IP	
7.2.6. Resources	
7.2.6.1. Internal resources Modbus ID	
7.2.6.2. Terminals	
7.2.6.2.1. Binary (I1I6)/pulse inputs (I1I5)	
7.2.6.2.1.1. Maximum pulse frequency	
7.2.6.2.1.2. Bit triggering flow calculation	
7.2.6.2.1.3. Name	
7.2.6.2.1.4. Operating mode	
7.2.6.2.1.5. Filtering constant	
7.2.6.2.1.6. Dynamic pull-up	
7.2.6.2.1.7. Minimum pulse length	
7.2.6.2.1.8. Slope	
7.2.6.2.1.9. Flow unit	
7.2.6.2.1.10. Flow scaling	
7.2.6.2.1.11. Pulse weight - engineering units	53

7.2.6.2.1.12. Alarm HiHi - engineering units	53
7.2.6.2.1.13. Alarm Hi - engineering units	54
7.2.6.2.1.14. Alarm Lo - engineering units	54
7.2.6.2.1.15. Alarm LoLo - engineering units	54
7.2.6.2.1.16. Alarm hysteresis - engineering units	54
7.2.6.2.1.17. Deadband - engineering units	55
7.2.6.2.2. Binary outputs (Q1Q2)	55
7.2.6.2.2.1. Name	55
7.2.6.2.2.2. Controlling bit	55
7.2.6.2.2.3. Pulse length	56
7.2.6.2.3. Analog inputs (AN1AN3)	56
7.2.6.2.3.1. Sensor powering voltage Vo	56
7.2.6.2.3.2. Measurement delay after activating Vo	56
7.2.6.2.3.3. Triggering bit	56
7.2.6.2.3.4. Name	57
7.2.6.2.3.5. Engineering units	57
7.2.6.2.3.6. Low reference	57
7.2.6.2.3.7. Low reference - engineering units	57
7.2.6.2.3.8. High reference	58
7.2.6.2.3.9. High reference - engineering units	58
7.2.6.2.3.10. Alarm HiHi - engineering units	58
7.2.6.2.3.11. Alarm Hi - engineering units	58
7.2.6.2.3.12. Alarm Lo - engineering units	58
7.2.6.2.3.13. Alarm LoLo - engineering units	59
7.2.6.2.3.14. Alarm hysteresis - engineering units	59
7.2.6.2.3.15. Deadband - engineering units	59
7.2.6.3. Counters (CN1CN8)	59
7.2.6.3.1. Incrementing input	60
7.2.6.3.2. Incrementing input's active slope	60
7.2.6.3.3. Decrementing input	60
7.2.6.3.4. Active edge of decrementing input	61
7.2.6.4. Timers	61
7.2.6.4.1. Synchronous timers (CT1CT8)	
7.2.6.4.1.1. Start	61
7.2.6.4.1.2. Interval	62
7.2.0. 1.2.3. Buys of week	62
7.2.6.4.1.4. Days of month	
7.2.6.5. Temperature sensor	
7.2.6.5.1. Alarm Hi	
7.2.6.5.2. Alarm Lo	
7.2.6.6. Vibration sensor (I5 input)	
7.2.6.6.1. Activity delay [s]	
7.2.6.6.2. Activity time [min]	
7.2.6.7. Power supply	
7.2.6.7.1. Low voltage alarm	
7.2.6.7.2. Alarm notifying period	
7.2.6.8. GPS	
7.2.6.8.1. SEL selection bit	
7.2.6.8.2. Bit triggering position measurement	
7.2.6.8.3. Bit triggering position measurement, when SEL=0	
7.2.6.8.4. Bit triggering position measurement, when SEL=1	
7.2.6.8.5. Accuracy of position measurement (HDOP)	
2.6.8.6. Movement signaling.	
7.2.6.8.7. Movement signaling threshold [km]	
7.2.6.8.8. Geofencing	6/

7.2.6.8.9. Base position - latitude	67
7.2.6.8.10. Base position - longitude	68
7.2.6.8.11. Radius [km]	68
7.2.6.9. Logger	68
7.2.6.9.1. Record validity time	68
7.2.6.9.2. Recipient	69
7.2.6.9.3. Recipient's UDP port	69
7.2.6.9.4. Sending in online mode	69
7.2.7. Events	
7.2.7.1. Number of events	70
7.2.7.2. Events table	70
7.2.8. GSM activities	71
7.2.8.1. Active after SMS reception	71
7.2.8.2. Active after GPRS frame reception	71
7.2.9. Rules	71
7.2.9.1. Sending SMS	71
7.2.9.1.1. SMS validity time	72
7.2.9.1.2. Number of SMS sending rules	72
7.2.9.1.3. SMS 132	73
7.2.9.1.3.1. Triggering event	73
7.2.9.1.3.2. Recipient	73
7.2.9.1.3.3. Template	
7.2.9.1.3.4. Activity period after login	
7.2.9.2. Sending data	
7.2.9.2.1. Recipient's UDP port	
7.2.9.2.2. Data validity time	
7.2.9.2.3. Number of data sending rules	
7.2.9.2.4. Data 132	
7.2.9.2.4.1. Triggering event	
7.2.9.2.4.2. Data format	
7.2.9.2.4.3. Recipient	
7.2.9.2.4.4. Activity period after login	
7.2.9.2.4.5. Address space	
7.2.9.2.4.6. Buffer start address	
7.2.9.2.4.8. Receiver's buffer address in HREG address space	
7.2.9.2.4.6. Receiver's buffer address in fixed address space	
7.3.1. Counters (CN1CN8)	
7.3.1. Counters (CN1CN8)	/8
8. MAINTENANCE AND PROBLEM SOLVING	78
8.1. LED SIGNALING	70
8.1.1. PWR LED	
8.1.2. LED indicators	
8.2. Unblocking the SIM card	82
9. TECHNICAL PARAMETERS	82
9.1. General	82
9.2. MODEM GSM/GPRS	
9.3. BINARY/PULSE INPUTS I1I6	
9.4. NMOS OUTPUTS Q1, Q2	
9.5. Analog inputs AN1AN3	
9.6. POWER OUTPUT VO	
9.7. LOGGER	84

9.8. GPS receiver	84
9.9. Temperature sensor	84
9.10. POWER SUPPLY	84
9.11. ENCLOSURE	84
9.12. Drawings and dimensions	85
10. SAFETY INFORMATIONS	86
10.1. Working environment	86
10.2. ELECTRONIC EQUIPMENT	86
10.2.1. Heart pacemakers	86
10.2.2. Hearing aids	
10.2.3. Other medical equipment	86
10.2.4. RF Marked equipment	86
10.3. EXPLOSIVE ENVIRONMENT	86
11. APPENDICES	87
11.1. SMS COMMANDS SYNTAX	87
11.2. MEMORY MAP	89
11.2.1. Analog inputs/binary inputs address space	90
11.2.2. Internal registers/binary outputs address space	93
11.3. BIT LIST	94

1. Module's destination

The MT-723 is a specialized telemetry module optimized for use within simple measuring and alarm systems where power lines are not available and environmental conditions are harsh (dust, high humidity, possibility of water flooding).

Compact design, low power consumption, a wide range of acceptable energy sources (alkaline or lithium battery packs, gel or car batteries, solar panels and other), continuous pulse counting on binary inputs, local logging of measurement results and spontaneous information sending upon predefined events makes the module ideal choice for applications requiring periodical supervision of parameters and long time operation on battery supply.

The typical application areas are water-sewerage, especially water flow measuring using potential-free contact meter and monitoring of water level in wells and vessels.

For better acquaintance with the module and optimizing the power consumption we recommend reading configuration guide and application examples in appendices.

2. How to use the manual

The manual was written for beginners as well as for advanced telemetry users. Each user will find useful information about:

Module's design - this chapter presents the basic information about module's resources and design elements. Her is the information about how does the module work and how and where it may be employed

Module's connection diagrams - contains diagrams and procedures for connecting MT-723 with devices and external elements like sensors, antennas or the SIM card

First start of the module - contains recommended first start procedure

<u>Configuration</u> - this chapter presents information about all available configuration parameters. All parameters concern firmware version compliant with documentation version

<u>Maintenance and problem solving</u> - here is described procedure of unblocking locked SIM card and LED signaling schemes

Technical parameters - a revue of technical parameters and technical drawings

Safety information - information concerning conditions of secure use of the module

<u>Appendices</u> - contain a register of changes in consecutive firmware versions, syntax of SMS messages and the memory map of the module which is necessary for proper configuration of MTDataProvider and data collecting equipment.

3. GSM requirements

For proper operation of the module a SIM card provided by a GSM operator with GPRS and/or SMS option enabled is essential.

The SIM card has to be registered in the APN with static IP addressing. Assigned to SIM unique IP address will become a unique identifier of the module within the APN, enabling the communication with other units in the structure.

A paramount condition for operation is securing the adequate GSM signal level in the place where module's antenna is placed. Using the module in places where there is no adequate signal level may cause breaks in transmission and thereby data loss along with generating excessive transmission costs.

4. Module's design

4.1. Module's topography

4.2. Resources

Hardware Resources of MT-723:

DI bipary inputs	5	binary inputs, pulse or potential free (the function is selected during configuration)	
DI - binary inputs		potential free binary input 16 with possibility of setting its state using magnet (reed switch)	
AI - analog inputs	2	0-5 V, with possibility of supplying power to the measuring circuit	
DO – binary outputs	3	NMOS outputs ("open drain" type) 0+30 VDC, mono- or bistable (the function is selected during configuration)	
Temperature sensor	1	temperature sensor integrated in the microprocessor	
Vibration sensor (binary input 15)	1	module has an integrated vibration sensor of contact, normally open, connected to digital input 15. It is used to detect movement of the device.	
GPS Module (optional)	1	for calculating geographical position and time synchronization	
Pressure sensor (optional)	1	special version of the module with an integrated pressure sensor	
Module flooding sensor (optional)	1	in developing stage	

4.2.1. Binary inputs

MT-723 module is equipped with 6 binary inputs (DI) marked as I1...I6.

Inputs **I1...I6** are designed to cooperate with potential free contacts (contacts connecting the input and common for all inputs ground). The inputs operate in **negative logic**, meaning the input is high when connected to ground and low if the circuit is open. This solution allows energy saving, a crucial ability for battery driven devices. The contacts are polarized with potential of 3V in low state. Binary inputs **are not isolated.**

Each binary input, independently of other inputs configuration may operate as:

- Binary input change of input's state after considering filtration coefficient results in change of bit assigned to it in memory (see the memory map). The bit's state change may be used to trigger data transmission, sms, analog signal measurement and other actions.
- Pulse input allows calculating the flow based on counted flow-meter pulses. Aberrations may be filtered by setting signal's max. frequency, assuming the signal fill is 50%, (global setting) and max. pulse duration (individual for each input). The flow may be defined in engineering units per minute or hour. Each flow has assigned 4 alarm bits that may be used for event triggering.

NOTICE! In this mode bits assigned to inputs (I1...I5) do not change their state and cannot be used to trigger events except for counting inputs for counters CNT1...CNT5.

Binary input **I5** is connected with an integrated vibration sensor with normally open contacts. Therefore **it is not recommended** to use input I5 as binary input for fast-changing digital input signal or pulse input. It is not possible to simultaneously use the functionality of the vibration sensor and digital input, or pulse input I5. Additional parameters associated with vibration detection are gathered in <u>Vibration sensor</u> (optional) parameters group.

Binary input **16** can operate **only as a binary input**. This input can be, in addition to short-circuiting its pin to GND pin, set in a high state by approximating the magnet to a point marked on the left side of the module.

Irrespectively to chosen mode of operation states of the binary inputs are monitored by the module in both **energy-consuming and sleep mode**.

4.2.2. Binary outputs

MT-723 module is equipped with 2 binary outputs (DO) marked as Q1 i Q2 .

The outputs are designed to control loads powered by internal source (e.g. light signaling). The outputs are of "open drain" type controlled by NMOS transistors. In High state the output is shorted to the ground by active NMOS transistor. In case of inductive type load connected (a relay) the circuit limiting voltage peaks to max. +30V is necessary.

Each binary output may be controlled remotely (SMS, GPRS) or locally. This means that the state may be altered by any device's bit change (e.g. analog input alert) defined in output configuration.

The outputs may operate as mono- or bistable outputs. The operating mode as well as length of the pulse in monostable mode is individually defined for each output.

4.2.3. Analog inputs

MT-723 module is equipped with 3 voltage analog inputs (AI) marked AN1...AN3.

The inputs are designed to work with analog sensors generating signal in **0...5V** range. In order to minimize energy consumption the A/C converters are powered for the period necessary to conduct secure measurement.

The analog inputs are not isolated but due to floating, battery powering it does not influence modules resistance to disturbances.

The module measures values on all inputs simultaneously. Measurements may be triggered by any device bit (e.g. clock or binary input).

The result integration time for analog inputs is app. 0,5 sec. and minimum measure interval is 1 sec.

4.2.4. Power output Vo (analog sensors supply)

MT-723 module is equipped with the keyed power output Vo, which is destined to power sensors connected to analog inputs.

This output allows user to power sensors with voltage ranging from **0** to **5VDC** with step **0.1V**. Voltage is specified by the user parameter configuration.

In order to lower power consumption of the device, output is switched on only for the time necessary for the measurement. The delay between switching the input on and the measurement (and therefore turning off of output Vo) is configurable.

4.2.5. Temperature sensor

Integrated in the modem temperature sensor measures the temperature inside the enclosure and - after configuration - sends alerts about too high respective too low temperature.

Employing the sensor allows detection of operating on the border of allowed operating temperature.

4.2.6. Vibration sensor

Binary input 15 is connected with an integrated vibration sensor with normally open contacts. This sensor can be used for detection of module movement. This allows user to detect intrusion into measurement system ,perform measurements of module's positions only when the device moves more.

Vibration sensor is always on.

4.2.7. Real Time Clock

MT-723 module is equipped with Real Time Clock (RTC). This clock is a source for time measurement for the module's timers and time stamping of measurements stored in the Logger. The data transmitted by GPRS and data recorded in the logger are stamped with UTC time without taking the time zone into consideration. The timer used by SMS services and Timers respects the time zone settings.

Real Time Clock may be synchronized with:

- network operator time (the service provided by some GSM operators),
- automatically with the **MTSpooler** (at every reporting to the server. Previous assignment of Spooler's IP),
- manually, using the **MTManager** (the clock synchronizing is described in the program documentation),
- automatically with GPS localization- available in modules with installed GPS receiver.

It is recommended to manually synchronize module's real time clock during the first configuration performed using the **MTManager** program.

NOTICE!!!

The clock setting has to be repeated if the module was in storage mode (details in <u>Power supply</u> chapter).

4.2.8. Timers

MT-723 module is equipped with 8 general purpose programmable synchronous timers. Their function is counting constant user defined time intervals in range of 1 min to 24 hours. The user may appoint month and week days when the timer is active.

The timer may be used to trigger periodical events like measuring analog values, flow, data transmission, logger recordings and other functions.

4.2.9. Counters

MT-723 is equipped with 8 general purpose counters. Their duty is to count pulses understood as binary signal changes of any bit present in the memory map. Each counter has one incrementing and one decrementing input and assigned 32-bit register holding the difference of counted pulses.

Initial state of the counters may be defined by user activating MTManager2.0 menu item **Initial settings** (more info in **MTManager2.0** manual).

Counters may be used for e.g. flow meter's pulse counting, counting of enclosure openings, GPRS logins and many others.

4.2.10. Logger

MT-723 module has a programmable logger that may hold up to 10240 data records. This equals either 24 hours measurements taken every 10 seconds or 1 month measurements taken with 5 minutes intervals.

The logger logs asynchronous data, meaning that the record writing is triggered by an event (defined by user in the <u>Event table</u>). The event may be e.g.: analog value measuring completion, counting the time by the timer, login to GPRS, crossing one of

defined alarm thresholds and other. The logger records **all of the events defined in the table**. The user has an opportunity to define which ones have to be transmitted. The records are the copy of all module's registers. Each record in the logger has a time stamp of the module's internal Real Time Clock (RTC) .

The data written in the logger is transmitted to IP address assigned during configuration. Sending of the logger content is triggered by user defined events. Confirmation of reception marks records as sent. In case of overflowing the oldest records are overwritten.

4.2.11. GPS (optional)

MT-723 module may be equipped with a GPS receiver. This allows defining the exact geographical position of the module. This feature may be employed to identify units in a mass deployment or to define actual position of the mobile measuring point. It is possible to use a GPS receiver to report movements of the module.

4.3. USB

MT-723 provides USB socket used for local configuration by MTManager2.0 program.

When module is connected via USB to a computer, it is powered via USB port. Thanks to that the module does not consume limited battery power during configuration and tests. During USB connection **VBAT** register holding data of battery voltage is **frozen on the last recorded value** (at first configuration the value is 0).

For **USB** connection a standard AB type cable is used. See depicted plugs of the cable below.

The proper USB connection is signaled by the **POWER LED** (the module is powered by USB) and the **USB LED** (USB port ready for transmission). Data transmission is signaled by shot flashes of USB LED.

Detailed information on using the **USB** port for module configuration can be found in the **MTManager2.0** manual.

4.4. SIM card

MT-723 module is equipped with a holder for miniature SIM card. The holder is placed horizontally on the PCB inside the enclosure.

Proper insertion of the **SIM** card is essential for module's operation in GSM network. The module accepts only **SIM** cards in **3,3V** low voltage technology.

4.5. Power supply

MT-723 module can be powered from **any DC power source** providing voltage within the range of 7-30 VDC, including a DC power supply, alkaline batteries, gel batteries, photovoltaic cells, and others.

It is recommended to place the power supply in IP68 enclosure and ensure the connection with module is of the same class. Any power source housing or connectors leakage may allow water penetration and consequently damage electronic components of module. Proper power source connection is described in <u>Power supply</u> subchapter of <u>Connection diagrams</u> chapter.

When module is being configured via USB it is powered from a PC. This allows module to reduce battery consumption. Working with such supply is indicated by **PWR** and **USB** LEDs (details provided in *LED signaling* subchapter of *Maintenance and problem solving* chapter). Module connected to PC via USB is constantly in high energy consumption state (is awake and logged to GSM/GPRS network).

The module is equipped with an internal lithium **backup battery** that is designed to provide power to module after main power loss. This battery is **not replaceable nor rechargeable**.

The module can be in three power supplying modes:

- operational mode this is the default power supplying mode. In this mode
 modules is powered from external main power source or from USB cable.
 Module enters this state after connecting USB cable or connecting main power
 source. In this mode full functionality of module is available;
- backup power mode in this mode module is powered from backup battery. Module enters this state three minutes after main power source loss. In this mode module is measuring binary inputs, counting pulses, measuring flows. Analog measurements and GSM/GPRS communication are not possible in this mode. Module is constantly in sleep mode to preserve power it is signaled by PWR LED. It is advised to replace damaged/depleted power source as soon as possible;
- **storage mode** in this mode is not connected to any power source and does not consume power from the internal lithium backup battery. To set module in this mode hold magnet for 1 minute at the point marked on the bottom of the device. The transition to this mode is indicated by lack of LED signaling (within 12 seconds there should be no **PWR** or other LED blink);

4.6. LED indicators

LED indicators placed on MT-723 module's PCB are a great help during modules startup.

The LED's have assigned following significance:

- PWR LED indicates module's activity and mode
- ERR LED indicates an error
- STA LED indicates GSM status
- TX LED indicates GSM data transmission
- RX LED indicates GSM data reception
- USB LED indicates USB communication on USB port

Detailed description can be found in <u>LED signaling subchapter of Maintenance and problem solving chapter</u>.

4.7. GSM antenna

Connecting the antenna is necessary for reliable data transmission from MT-723 module. SMB IP68 type antenna socket is placed on module's panel.

Depending on local signal propagation and user's needs different antenna types may be used. Proper antenna placement is important during the module installation. In case of low GSM signal level using the directional antenna or antenna high gain may be necessary.

It is essential to use IP68 connector to prevent moisture penetration which can cause module damage.

4.8. Pressure sensor

Connecting the antenna is necessary for reliable data transmission from MT-723 module. SMB IP68 type antenna socket is placed on module's panel.

Depending on local signal propagation and user's needs different antenna types may be used. Proper antenna placement is important during the module installation. In case of low GSM signal level using the directional antenna or antenna high gain may be necessary.

It is essential to use IP68 connector to prevent moisture penetration which can cause module damage.

4.9. Module flooding sensor

Connecting the antenna is necessary for reliable data transmission from MT-723 module. SMB IP68 type antenna socket is placed on module's panel.

Depending on local signal propagation and user's needs different antenna types may be used. Proper antenna placement is important during the module installation. In case of low GSM signal level using the directional antenna or antenna high gain may be necessary.

It is essential to use IP68 connector to prevent moisture penetration which can cause module damage.

4.10. Reed switch input

Between **DIGITAL1** and **DIGITAL2** sockets, in place marked on module housing there is spot which is used as reed switch test input. It is activated by putting a magnet on marked spot and then moving it away (negative logic).

Activation of this input causes setting **KEY_P** bit for one program cycle. This feature can be used to trigger events and/or measurements during telemetry system tests.

4.11. Enclosure

Enclosure of MT-723 module is manufactured from high quality plastic securing highest environmental protection (IP68) for the electronics even in harsh environment. Housing is manufactured by FIBOX. All enclosure data including the parameters of used

material are available at manufacturer's web page www.fibox.com.

Please note that the degree of protection is highly dependent on used connectors. Connectors used in the construction ensure maintaining IP68 protection degree. **Using other connectors may result in water penetration and consequently cause device damage.**

5. Connection diagrams

This chapter presents recommended wiring configurations ensuring proper functioning of all MT-723 module's resources.

Connections are presented for:

- Binary inputs I1...I5
- Binary outputs Q1...Q2
- Analog inputs AN1...AN3
- Power supply

and installation methods of:

- SIM card
- GSM antenna
- GPS antenna

5.1. Binary inputs

Binary inputs of MT-723 operate with **negative logic**, meaning that high state occurs only when the input is connected to ground. In open circuit the potential in reference to GND pin is not higher than **2,5 VDC**. Inputs work only with potential-free contacts like relay outputs, keyed transistor outputs. Below you can find recommended input connection diagram and sockets pinout description necessary for preparing plugs.

Resource	Connector	Pin number*
I1	Digital1 (4-pin)	1
12	Digital1 (4-pin)	2
13	Digital2 (6-pin)	1
14	Digital2 (6-pin)	2
15	Digital2 (6-pin)	3
16	Digital2 (6-pin)	4
GND	Digital1 (4-pin)	4
GND	Digital2 (6-pin)	6

^{*}pin in plug and pin in socket that create a contact have the same pin number

All binary inputs have same reference - module's electrical ground - negative pole of the power supply connected to **GND** pin.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps. Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.2. Binary outputs

Binary outputs are **transistor outputs** of **NMOS type** (QI). They are designed to control loads powered from **external**, **positive potential source**. In the high state the output is shorted to ground via NMOS transistor in ON state ("open drain" circuit).

In case of inductive type load connected (a relay) a circuit limiting voltage peaks to \max . +30V is necessary.

Below you can find recommended input connection diagram and sockets pinout description necessary for preparing plugs.

Resource	Connector	Pin number*
Q1	Digital1 (4-pin)	3
Q2	Digital2 (6-pin)	5
GND	Digital1 (4-pin)	4
GND	Digital2 (6-pin)	6

^{*}pin in plug and pin in socket that create a contact have the same pin number

All binary outputs have same reference - module's electrical ground - negative pole of the power supply connected to ${f GND}$ pin.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps. Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.3. Analog inputs

Analog inputs convert input voltage in 0-5V range. This means that the potential between analog input terminals shall not be higher than 5V. The potential of analog input terminals towards module's ground (applies for connection with the symmetrical sensor, four leaded) has to be within -0.5V to 9V for positive terminal and from -5.5V to 9V for negative terminal.

Power output Vo used to supply the sensors allows generating potential in 0-5V range with 0.1V accuracy. Max. drawn current should not exceed 50mA.

Diagrams illustrating recommended connections of sensors in various configurations.

Sockets pinout description necessary for preparing plugs is described below:

Resourse	Pin number*
AN1+	1
AN1-	2
AN2+	3
AN2-	4
AN3+	5
AN3-	6
Vo	7
AGND	8

^{*}pin in plug and pin in socket that create a contact have the same pin number

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.4. GSM antenna

Antenna can be connected to MT-723 module via SMB IP68 socket.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.5. GPS antenna

Antenna can be connected to MT-723 module via SMB IP68 socket. This socket is available only in modules with integrated GPS receiver.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.6. SIM card installation

Proper insertion of the **SIM** card is one of fundamental conditions of module's correct operation. Without it the data transmission and access to SMS services are impossible.

We recommend that inserting of **SIM** card is done with power disconnected, which means that both battery and USB cable are not connected.

We recommend inserting the SIM card after writing to module configuration including correct PIN code for that SIM card. Bear in mind that after three attempts of entering wrong PIN code the SIM card gets blocked. Inserting of wrong pin code is signaled by LED indicators. The blocked card may be unblocked. For details see procedure described in <u>sub-chapter Unblocking the SIM card of Maintenance and problem solving chapter</u>.

The SIM card should be inserted into SIM holder hidden behind large protective cap. SIM card contacts should face bottom of modules enclosure. The card should be pushed gently till slight resistance is felt. Properly installed SIM card should stick out slightly from the protective gel covering module's electronic parts.

Correctly installed **SIM** card secures connection between its contact fields and the holder contacts.

5.7. Power supply

MT-723 module can be powered from **any DC power source** providing voltage within the range of 7-30 VDC, including a DC power supply, alkaline batteries, gel batteries, photovoltaic cells, and others.

Resource	Pin number*
VIN-	1
VIN+	2

^{*}pin in plug and pin in socket that create a contact have the same pin number

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.8. Installation

Telemetry module MT-723 must be secured to a stable substrate (e.g. to concrete wall), using two screws or bolts put through montage holes marked on the image below. Diameter of the holes is 5 mm and spacing between them is 160 mm.

Nie należy narażać obudowy na naprężenia bądź drgania mechaniczne, które mogą doprowadzić do jej rozhermetyzowania i w konsekwencji uszkodzenia urządzenia. Do not expose the enclosure to tension or mechanical vibrations, which may lead to the dehermetization and as consequence to module damage.

6. First start of the module

First start of the module MT-723 requires a few simple activities. We recommend supplying the power via USB in order to save the battery. Please follow these steps:

1. Connect signal wires and GSM antenna

Recommended connections diagrams for signal wires and the antenna are in <u>Module connections diagrams</u> chapter.

2. First configuration of the module

The scope of first configuration of **MT-723** is to enter parameters enabling login to GSM network and optionally GPRS network. A USB connection to the computer running **MTManager** program suite has to be established. Detailed information on how to install and use the **MTManager** program is on the MTManager installation CD (MT-CD).

In order to login to GSM/GPRS network the basic information about the SIM card and APN have to be provided to the module:

In **General** group:

PIN code for the SIM card

provide PIN code for SIM card that is going to be placed in the module (unless the card is set in pin-less mode).

Using GPRS

Yes - if using SMS and GPRS packet transmission is intended **No** - if the module is going to use SMS mode only.

In **GPRS** group - visible when *Using GPRS* parameter is set to *Yes*:

APN name
provide APN name for GPRS transmission.

APN user name
provide user name (if required by the operator)

APN password
provide the password (if required by the operator)

These parameters are the only parameters required to login to GSM/GPRS network. Bear in mind that the module with only the basic configuration does not have ability to send data. After checking the ability to login the full configuration of parameters has to be performed in order to use the module in intended extent.

3.Inserting the SIM card

After downloading the first configuration disconnect the USB connection, insert the SIM card according to the <u>previous chapter's instructions</u> and reconnect the USB cable. The module should login to the GSM/GPRS network. The status of the module may be verified by comparing LED indicators with the table provided in the <u>sub-chapter LED signaling of Maintenance and problem solving chapter</u>.

Login sequence:

- 1. Module start
- 2. Verification of SIM card's PIN code
- 3. Registration of modem in GSM network
- 4. Login to selected APN in GPRS network

Verify the configuration if any errors are indicated.

4. Setting the module time

The last, but very important element of module's startup is synchronizing the Real Time Clock of the module with the computer clock. It is crucial since lack of synchronization may result with faulty time stamping of the data in Logger and may lead to data loss. More information about time synchronization is in MTManager user manual.

7. Configuration

7.1. General information

Configuration of MT-723 module is performed by MTManager (MTM) program delivered free of charge to all users of our telemetry solutions.

The program objective is creating a coherent program environment for management and configuration of MT/ML module series.

The program is a specialized environment enabling full control of the telemetry system regardless its size.

The opportunity of dividing all resources into Projects and Folders facilitates management of very large systems.

All parameters described below are available after adding a MT-723 module to MTM environment. Detailed description of functionality and use of MTM program is to be found in MTManager User Manual.

7.2. Parameter Groups

For the ease of use, **MT-723** parameters are divided into logically or functionally related groups.

<u>Header group</u> - contains unmodifiable parameters describing the module, firmware and configuration.

General group - contains basic parameters defining module's operating mode

SMS group - contains parameters for SMS services handling

 contains parameters necessary for log in GPRS network and defining vital parameters for reliable transmission

- contains lists of phone numbers and IP addresses of other terminals authorized to communicate with the module

- contains parameters for programmatic and hardware resources related to reading and processing measurement data

 contains a list of defined events (e.g. binary input state change), used to trigger module's actions (e.g.: sending SMS, measurement data, logger data)

Authorized numbers group

Resources group

Events group

GPRS group

GSM activity group

- contains parameters extending GSM/GPRS log in time after

reception of SMS or incoming data

Rules group

- contains lists of transmission tasks to perform when defining criteria are met

Beyond above mentioned configuration parameter groups there are <u>Initial settings</u>, enabling presetting of module's resources.

7.2.1. Header group

The header group contains basic information describing the module, along with configuration and version of configuration file stored by the program. Information displayed is for verification purposes only and thus not available for user configuration.

7.2.1.1. Module name

Performed - Presents the name assigned to the module during

function configuration

Data type - Text

Range - None, read only parameter

Comments - N/A

7.2.1.2. Module type

Performed - Displays the type of configured module

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A Comments - N/A

7.2.1.3. IMEI number

Performed - Displays GSM modem's IMEI number

function

Data type - Number

Range - N/A, read-only parameter

Comments - N/A

7.2.1.4. SIM card's number

Performed - Displays SIM card's serial number

function

Data type - Number

Range - N/A, read-only parameter

Comments - N/A

7.2.1.5. Module's serial number

Performed - Displays the serial number of configured module

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - This field displays a serial number assigned during

manufacturing process. This is a device's unique identifier.

7.2.1.6. Modem firmware version

Performed - Displays GSM modem's firmware version

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The field updates automatically after downloading the

firmware.

7.2.1.7. Module's firmware version

Performed - Displays the identifier of current firmware version

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The field updates automatically after downloading the

firmware

7.2.1.8. Configuration file version

Performed - Displays the version of configuration file used to configure

function the module

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The value depends on firmware version chosen during

creation of module definition. Additional literal extension enables creation of sub-versions within same general

functionality.

7.2.1.9. Configuration identifier

Performed function

Displays the identifier of current device configuration

Data type Hexadecimal

Range N/A, read-only parameter

Default value

Comments The value is increased automatically by 1 after each

successful configuration downloaded to the module

7.2.1.10. Last configuration date

Performed function

Displays the date and time of last successful configuration

change

Data type Text

N/A, read-only parameter Range

Default value N/A

Comments The value of this field updates automatically after successful

configuration change.

This parameter helps tracing unauthorized configuration

changes.

7.2.1.11. Last read device time

Performed function

Displays internal clock time read upon change of time or

during last configuration reading.

Data type

Compliant with Time and Date format Range

Default value N/A

This field's value may be used for verifying last access time Comments

and setting real time clock (RTC) of the module

7.2.2. General

Group General consists of parameters vital for module's operation regardless of employed resources and functionality. Data inserted here is paramount for proper log-in to GSM and GPRS network. One has to be aware of the fact that values inserted here influence module's operation. Inserting invalid parameter values may render the module dysfunctional (e.g. inserting of invalid PIN code for the SIM card)

7.2.2.1. PIN code of the SIM card

Performed function

Allows passing of the PIN code supplied along with the SIM

card inserted into the module.

For SIM cards not protected by the code the value is

insignificant.

Data type Number Range - Max 8 digits

Default value - N/A

Comments - Inserting of wrong value may cause blocking of the module.

NOTICE!!!

Pay attention when inserting the PIN code. Inserting of wrong code will not only render starting of the module impossible but may lock the SIM card! To prevent locking the card the module makes only 2 attempts of inserting the PIN code.

In case of module signaling locked SIM card apply <u>unblocking procedure</u> described in **Problem solving** chapter.

7.2.2.2. Configuration password

Performed - Allows protecting the configuration with a password. The password will be required in order to read and write

password will be required in order to read and write configuration both for local and remote operations. The password protects against unauthorized attempts of changing the configuration. The password does not protect

against reading of module's resources.

Data type - Alphanumeric

Range - Letters, digits and special characters; max 31 characters

Default value - N/A

Comments - Since the only way of unlocking the module without the

password is returning to factory settings it is strongly

recommended to store passwords at safe location.

7.2.2.3. Configuration read disable

Performed - Allows blocking of configuration reading even when valid password is supplied.

Data type - Selection list

Range - Yes

Configuration reading is impossible

No

The module is not protected against reading of

configuration

Default value - No

Comments - This parameter does not influence writing of full

configuration while it prevents writing changes if configuration identifiers are not identical in the module and

in MTManager program.

7.2.2.4. Time synchronization

Performed function

Selects the source and synchronizes module's real time

clock (RTC)

Data type

Selection list

Range

None

time synchronization off

Operator GSM

time synchronization with GSM operator's network. This option works only in networks supporting time

synchronization.

Default value

None

Comments

If the module is furbished with GPS module, the clock will be synchronized with GPS time each time the geographical position is set. This synchronization is independent of Time synchronization parameter settings.

7.2.2.5. Using GPRS

Performed function

The parameter selects module's operating mode.

Data type

Selection list

Range

Yes

The Module operates in GPRS mode and attempts to log in to appointed APN at power on. This mode

requires SIM card with GPRS enabled.

No

The Module operates in GSM mode. The only way of remote operation is sending SMS messages. This operating mode does not require GPRS thus

allowing use of a pre-paid SIM

Default value Yes Comments N/A

7.2.3. SMS

Group SMS contains parameters related to sending and receiving of text messages by MT-723 module.

7.2.3.1. Daily SMS limit

Performed function

Defines max number of SMS, the module may send during one day. The parameter protects against uncontrolled sending of SMS messages and consequent high running

expenses.

Data type Number 1...60 000

Range Default value 100

Comments N/A

ATTENTION!

Reaching set by the parameter limit results with unconditional stop of SMS sending. One has to bear in mind that until 00:00 o'clock no messages will be sent even in alarm situations!

Unsent due to limitation SMS messages are queued (the queue holds 16 messages) and will be sent when it is possible (after 00:00). If the number of queued messages is higher than the limit set by user, there is a risk of immediate consuming of the next days limit.

7.2.3.2. Number of SMS sending retries

Performed function

Defines max number of retries of failed SMS transmission

Data type Number 1...16 Range Default value .3

Comments After reaching the defined value the SMS is deleted from

sending queue.

7.2.3.3. SMS in roaming

Performed function Data type

Decides whether the module may send SMS when roaming

in foreign network. Selection list

Yes Range

All SMS messages are sent regardless of the GSM

roaming

No

When roaming in foreign GSM network no SMS are sent. Messages are queued and will be sent upon

return to home network.

Default value

Comments In order to be able to sent SMS in roaming the SIM card in

the module has to have roaming option active. When roaming option of the SIM is not active, the messages will be lost after reaching the <u>Number of SMS sending retries</u>.

7.2.3.4. SMS limit alert

Performed function

Contains the text of the SMS message sent upon reaching Daily SMS limit.

Text Data type

Letters, numerals and special characters; Range max 255

characters

Default value SMS limit was exceeded!

Comments This information is sent beyond standard messages queue

and only **once a day**. This message does not increment

sent messages counter.

7.2.3.5. SMS limit alert recipient

Performed - Selects the SMS limit alert recipient

function

Data type - Selection list

Range - Authorized numbers list and *None*

Default value - None

Comments - The recipient must be previously defined in Authorized

numbers -> Phone. Selecting None disables sending daily

SMS limit alert.

7.2.3.6. Response to empty SMS

Performed - defines the text of reply for empty SMS to the sender.

function

Data type - Text

Range - Letters, numerals and special characters; max. 255

characters

Default value - Hello! MT-723 here

Comments - In replay message text symbolic names may be used

following syntax rules defined in Appendices in the $\underline{\text{Syntax of}}$

read and write commands in SMS chapter.

7.2.4. GPRS

GPRS Group contains parameters related to log-in and data transmission functions in GPRS system. They can be divided into mandatory (e.g. <u>APN name</u>), optional (e.g. <u>Spooler IP</u>) and optimizing transmission (e.g. <u>Transmission timeout [s]</u>).

7.2.4.1. APN name

Performed - Defines the name of APN in which GPRS transmission will be

function carried out

Data type - Text

Range - Letters, numerals, special characters - max. 63 characters

Default value - Empty

Comments - Not defined APN name renders login to GPRS impossible.

7.2.4.2. APN user name

Performed - Defines user name for APN access

function

Data type - Text

Range - Letters, numerals, special characters - max. 31 characters

Default value - Empty

Comments - This parameter is optional, supplied only if GSM operator

requires it.

7.2.4.3. APN password

Performed function

Defines a password for the particular APN user

Data type

Text

Range

Letters, numerals, special characters - max. 31 characters

Default value

Empty

Comments

This parameter is optional, supplied only if GSM operator

requires it.

7.2.4.4. Device identifier

Performed function

Selects device identifier type to be set in data frame header

sent from the module.

Data type Selection list IP address Range

> The header of data frame contains IP address of sending device. The device is recognized by the data collecting service (MTDataProvider) on the base of

its IP address.

Serial Number

The header of data frame contains a serial number of sending device. The device is recognized by the data collecting service (MTDataProvider) on the base of its serial number. The advantage of this solution is the possibility of changing module's IP address (exchange of SIM card or dynamically assigned address) without changing MTDataProvider's configuration or giving up a part

of its abilities (writing into data base)

Default value IP address

Comments When operating in dynamic IP assignment mode the

identification goes by serial number and allows only

reception of data from the module.

7.2.4.5. Sender IP address control

Performed function

Switches the control of sender's IP address on/off

Data type Selection list

Range Yes

The module exchanges information only with IP addresses present on the Authorized IP addresses

list.

No

The module exchanges information (configuration, responses for queries) with any IP address sending qualified query or command. In this case the identification of the sender goes by its current identifier.

Default value

Yes

Comments

Switching the control off enables verification of the sender on the base of its currently assigned identifier other than IP address (e.g. serial number or (virtual IP for MT-1xx series)). This allows communication among units with dynamically assigned IP addresses (within same APN). Sender's identifier must reside on Authorized IP addresses list in order to establish the communication.

7.2.4.6. Module IP

Performed function

 Inserts IP address for newly created module definition. The address assigned upon last GPRS login and read in along

with the configuration is displayed

Data type - IP address

Range - 0.0.0.0 - 255.255.255

Default value - 0.0.0.0

Comments - When this field is left at default value 0.0.0.0 the remote

communication with the module will be impossible.

7.2.4.7. Spooler IP

Performed function

 Defines IP address of the computer running MTSpooler, the program performing delayed remote configuration of

battery powered modules.

Data type - Selection list

Range - Authorized IP list

Default value - None

Comments - If MTSpooler is not employed, the parameter should have

value *None*. This will avoid obsolete reporting to the spooler

and pointless retries due to missing replies.

7.2.4.8. GPRS transmission retries number

Performed function

- Defines number of attempts to send data through GPRS network if the reply to original transmission does not arrive in a timely manner specified by Transmission timeout

parameter

Data type - Number
Range - 0...9
Default value - 2

Comments - Setting the value to *O* results in sending data without waiting

for reception confirmation.

In normal conditions the value should not exceed 3. This prevents loss of transmitted data without blocking of subsequent rules processing. Bear in mind that subsequent data will be sent after reception of confirmation for reception of previous frame. Every transmission prolongs high energy consumption state and influences battery life time.

7.2.4.9. Transmission timeout

Defines the wait time for reception confirmation of sent data Performed

function frame . (in seconds)

Number Data type Range 1...60 Default value 8

Comments The value of this parameter along with number of

> transmission retries influences max. time of sending a data frame. For default values the time is (3 + 1) * 6 = 24s. One has to bear in mind that long waiting time consumes the

energy and shortens battery life time.

7.2.4.10. GPRS testing address (ping)

Performed Defines IP address for GPRS transmission test frames. function

IP address Data type

Range 0.0.0.0 - 255.255.255.255

Default value - 0.0.0.0

Comments This parameter defines IP address to send data frames

testing GPRS transmission channel. Default value 0.0.0.0 deactivates testing process. Any inserted IP address is assumed to be valid. We recommend putting here central

node's (data collector) IP address.

7.2.4.11. GPRS testing time

Performed Defines the interval of testing GPRS connection (in minutes)

function Number Data type 0 ... 250 Range

Default value

Comments Testing is performed by sending data frames to defined by

> the parameter GPRS testing address. Test frames are sent when the module is logged in APN and no communication is performed during the defined by this parameter period. If the test fails, that is the module does not receive confirmation during the time defined by the Transmission timeout parameter and after defined number of retries - the

connection to the APN is reset.

7.2.4.12. GPRS roaming

Performed Defines whether the module is to use GPRS transmission function

when roaming in foreign GSM network.

Selection list Data type

Range - Yes

In absence of home network availability the module will try to log in to available foreign GPRS network.

No

Using of GPRS networks other than home network

disabled.

Default value - No

Comments - In order to log-in to other networks the SIM card present in

the module must have roaming option enabled.

ATTENTION!

Using GPRS roaming may cause considerable expenses! It is strongly recommended to investigate the cost of GPRS transmission of countries one plans to use roaming services in!

7.2.5. Authorized numbers

Group **Authorized numbers** comprises lists of phone numbers and IP addresses the module is going to communicate with. The List of IP addresses serves to granting access to configuration and data reception privileges.

7.2.5.1. Number of phone numbers

Performed function

Defines the length of phone numbers list authorized to

exchange SMS messages.

Data type - Number Range - 0...32
Default value - 0

Comments - The value of this parameter may vary as the result of

adding/deleting when using the context menu operating directly on Phone number. The module will communicate only with units with the phone number present on the list. The only exception is a special SMS activating the module. Read more in Syntax for reading and writing commands

using SMS chapter of Appendices.

7.2.5.2. Number of IP addresses

Performed function

- Defines the length of the IP addresses list

Data type - Number
Range - 0...32
Default value - 0

Comments - The value of this parameter may vary as the result of

adding/deleting when using the context menu operating directly $\underline{\text{IP}}$ addresses list. The module will communicate only

with units with the IP address present on the list.

7.2.5.3. Phone

Ip. - Index number

Name - Friendly name facilitating identification of the module while

defining Rules. Max. length 16 characters

Number - Phone number assigned to list index. Max. 14 characters

Receiving - The module receives and analyzes SMS messages

depending on selected setting. When Receiving is not

allowed, all SMS messages will be deleted

Default value: ★ (not allowed)

Configuration - Depending on configuration settings incoming configuration

SMS will be processed or ignored. **Default value:** * (not allowed)

Entries on phone list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in parameters window.

7.2.5.4. IP

Ip. - Index number

Name - Friendly name facilitating identification of the module's IP

while defining Rules. Max. length 16 characters.

Number - IP address assigned to list index.

Receiving - Value of this parameter determines whether data arriving

from selected IP will be accepted or ignored

Default value: ✓ (Allowed)

Configuration - Value of this parameter determines whether remote

configuration data arriving from selected IP will be ignored or accepted. Notice that both sender's and receiver's $% \left(1\right) =\left(1\right) \left(1\right) \left$

addresses must reside in the same network (APN).

Default value: ✓ (Allowed)

Entries on the list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in parameters window.

7.2.6. Resources

Resources group contains user defined hardware configuration and hardware programs parameters. Particular sub-groups contain fields allowing fast and intuitive preparation of the module to perform measurements and evaluations of external parameters (binary states, pulse counters, temperature and air humidity) as well as internal (timers, flags).

7.2.6.1. Internal resources Modbus ID

Performed - Defines Modbus ID of module's Internal resources in Modbus

function Slave operating mode

 Data type
 - Number

 Range
 - 0 ... 255

Default value - 1

Comments - Value of ID Modbus *O* (zero) renders remote reading of

internal resources impossible.

7.2.6.2. Terminals

Sub-group **Terminals** comprises all hardware resources of the module that can be described as inputs or outputs.

Every resource has a group of parameters assigned. Proper configuration of parameters influences the quality of measurements and module's battery life time.

7.2.6.2.1. Binary (I1...I6)/pulse inputs (I1...I5)

Binary inputs of the module operate in two modes:

- binary input the input operates as negative logic input (logical true equals GND potential). Mode available for inputs I1...I6.
- pulse input configuration dedicated to counting pulses of external counters and calculating the flow. Mode available for inputs 11...15.

7.2.6.2.1.1. Maximum pulse frequency

Performed - Defines maximum frequency of counted pulses

function

Data type - Selection list

Range - 8Hz, 16Hz, 32Hz, 64Hz, 128Hz, 256Hz

Default value - 8Hz

Comments - For energy savings select lowest frequency required by

application.

7.2.6.2.1.2. Bit triggering flow calculation

Performed - Selects any bit from module's address space. Change of bit's

function state to high initiates flow calculation process.

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value - N/A

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.2.1.3. Name

Performed - Defines input's user friendly name

function

function

Data type - Text

Range - Letters and numerals, max. 31 characters

Default value - Respective *I1*, *I2*, *I3*, *I4*, *I5*, *I6*

Comments - Assigning friendly names facilitates discrimination of inputs

destination and required settings.

7.2.6.2.1.4. Operating mode

Performed - Defines binary input's operating mode.

Data type - Selection list

Range - Inactive

Input switched off

Binary input

Operates as binary input

Pulse input

Operates as pulse input (option unavailable for

input 16)

Default value - Inactive

Comments - According to selected mode MTManager displays additional

configuration parameters for each input

7.2.6.2.1.5. Filtering constant

Performed - Defines (in seconds) minimum duration of electrical state on the input to be considered stable, thereby indirectly defining

maximum time duration of electrical noise

Data type - Number - 0,1 ... 60,0

Default value - 0.1

Comments - Increasing the value increases noise immunity but delays

change detection reaction.

This parameter is available in binary input mode only.

7.2.6.2.1.6. Dynamic pull-up

Performed function

Defines dynamic pull-up function

Data type - Selection list

Range - Yes

Dynamic pull-up on

No

Dynamic pull-up off

Default value - Yes

Comments - Activating of dynamic pull-up reduces binary inputs energy

consumption - the current is sent through internal resistors

to the input only during input state sampling time.

When dynamic pull-up is off the current is flowing constantly thus increasing power consumption, especially for inputs

working in high state mainly.

We recommend to keep dynamic pull-up on, except

situations where:

• connected circuit has the capacity higher than

1 nF

• direct current contact clean up is required

7.2.6.2.1.7. Minimum pulse length

Performed function

Defines approximated minimal pulse length

Data type - Selection list Range - 2ms ... 12,8s

Default value - 64ms

Comments - This parameter filters high frequency signal noise. Available

values of the parameter depend on previously defined Max

pulse frequency

NOTICE! Do not select higher value than actual pulse duration, because it will make the module reject received

pulses as too short (noise).

This parameter is available in pulse input mode only.

Parameter unavailable for input 16.

7.2.6.2.1.8. Slope

Performed function

- Defines which slope of incrementing bit activates the

counter incrementing function

Data type - Selection list Range - *Pulse start*

pulse start is considered a new pulse

Pulse end

pulse end is considered a new pulse

Default value - Pulse start

Comments - This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.9. Flow unit

Performed

Defines the flow unit

function

Data type - Text

Range - Letters and numerals, max. 15 characters

Default value - mV

Comments - The unit name has solely informative value with no influence

on measured and transmitted information.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.10. Flow scaling

Performed function

Selects time reference units for flow scaling.

Data type - Selection list

Range - None

Minute (eng. units/min)

Defines value increase per minute

Hour (eng. units/h)

Defines value increase per hour

Default value - None

Comments - This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.11. Pulse weight - engineering units

Performed

function

Defines pulse weight

Data type - Number Range - 1 ... 1000

Default value - 7

Comments - The value of the parameter is multiplied by counted pulses

in order to calculate flow rate.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.12. Alarm HiHi - engineering units

Performed function

Defines **HiHi** alarm level for flow value in engineering units

 Data type
 - Number

 Range
 - 0 ... 32767

 Default value
 - 32767

Comments - Upon exceeding the preset value by calculated flow volume

the HiHi alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.13. Alarm Hi - engineering units

Performed function

- Defines **Hi** alarm level for flow value in engineering units

 Data type
 - Number

 Range
 - 0 ... 32767

 Default value
 - 32767

Comments - Upon exceeding the preset value by calculated flow volume

the Hi alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.14. Alarm Lo - engineering units

Performed function

Defines **Lo** alarm level for flow value in engineering units

 Data type
 - Number

 Range
 - 0 ... 32767

Default value - 0

Comments - Upon exceeding the preset value by calculated flow volume

the Lo alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.15. Alarm LoLo - engineering units

Performed function
Data type

Range

Defines LoLo alarm level for flow value in engineering

units
- Number
- 0 ... 32767

Default value - 0

Comments

- Upon exceeding the preset value by calculated flow volume

the LoLo alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.16. Alarm hysteresis - engineering units

Performed function

Defines the hysteresis value for flow alarm threshold. The

value is set in engineering units.

Data type - Number
Range - 0...32767
Default value - 100

Comments - Setting hysteresis relevant for signal fluctuations prevents

excessive activations of alarm flags.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.17. Deadband - engineering units

Performed - This parameter defines a minimal change of calculated flow value to react on. Exceeding this value sets a flag (**FL1_DB**

value to react on. Exceeding this value sets a flag (FL1_DB to FL5_DB) respective to the pulse input where the change has been detected high. The flag is reset after one

program cycle to low state (0).

Data type - Number Range - 0...32767

Default value - 100

Comments - When set to value *O*, the flag will rise upon every detected

flow change by minimum 1 engineering unit. Deadband flags are dedicated to continuous monitoring of flow

changes.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.2. Binary outputs (Q1...Q2)

The module has two latching binary outputs that may operate as mono or bi-stable. In the high state output connects to GND.

7.2.6.2.2.1. Name

Performed - Defines output's user friendly name

function

Data type - Text

Range - Letters and numerals, max. 31 characters

Default value - Respectively *Q1* and *Q2*

Comments - Assigning friendly names facilitates discrimination of

outputs destination and required settings.

7.2.6.2.2. Controlling bit

Performed - Selects any bit from module's address space. Change of bit's

function state to high triggers the output high.

Selection list or Number
 Range
 Name from the bit list (see bit list in Appendices) or 0

...65535

Default value - Respectively Q1 (address 10000), Q2 (address 10001)

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.2.2.3. Pulse length

Performed Defines the length of pulse generated on binary output in

function seconds. Number Data type

0,0...1800,0 with 0,1 step Range

Default value

Comments Setting the value to O changes operating mode of the output

from monostable to bistable (the output state is a true copy

of the controlling bit's state).

7.2.6.2.3. Analog inputs (AN1...AN3)

MT-723 module is equipped with three analog inputs operating in 0 ... 5V standard and one controlled analog output Vo designed to power connected sensors.

7.2.6.2.3.1. Sensor powering voltage Vo

Defines the value of voltage generated at power output Vo Performed function

dedicated to power analog sensors connected to the

module.

Data type Number 0,0 ... 5,0 Range

Default value 0,0

Comments Voltage adjusting step is 0,1 V. Max. current may not

exceed 50 mA.

7.2.6.2.3.2. Measurement delay after activating Vo

Performed Defines delay between delivering voltage to sensors and

function registering the readings.

Number Data type Range 0 ... 60 Default value

Comments Delay time is defined with 1 second accuracy. When set to 0,

readings are performed with 62,5 ms delay.

7.2.6.2.3.3. Triggering bit

Performed Selects any bit from module's address space. Change of bit's function state to high initiates analog inputs reading.

Selection list or Number Data type

Range Name from bit list (see bit list in Appendices) or 0 ...65535

Default value

Bit addresses 0...9999 point to input space while addresses Comments

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.2.3.4. Name

Performed - Defines input's user friendly name

function

Data type - Text

Range - Letters and numerals, max. 31 characters

Default value - Respectively AN1, AN2, AN3

Comments - Assigning friendly names facilitates discrimination of inputs

destination and required settings.

7.2.6.2.3.5. Engineering units

Performed - Defines engineering units for measured values

function

Data type - Text

Range - Letters and numerals, max. 15 characters

Default value - mV

Comments - Applied unit name has purely informative value and has no

influence neither upon measured nor transmitted values.

7.2.6.2.3.6. Low reference

Performed - Sets internal units low reference for rescaling of input signal

function to engineering units.

Data type - Number Range - 0 ... 5000

Default value - 0

Comments - Low reference for internal units

7.2.6.2.3.7. Low reference - engineering units

Performed - Sets engineering units low reference for rescaling of input

function signal to engineering units.

Data type - Number

Range - -32767... 32767

Default value - 0

Comments - Low reference for Engineering units

7.2.6.2.3.8. High reference

Performed - Sets internal units high reference for rescaling of input

function signal to engineering units.

 Data type
 - Number

 Range
 - 0 ... 5000

 Default value
 - 5000

Comments - High reference for internal units

7.2.6.2.3.9. High reference - engineering units

Performed - Sets engineering units high reference for rescaling of input

function signal to engineering units.

Data type - Number

Range - -32767 ... 32767

Default value - 5000

Comments - High reference for Engineering units

7.2.6.2.3.10. Alarm HiHi - engineering units

Performed - Defines HiHi alarm level for analog signal value in

function engineering units.

Data type - Number

Range - -32767 ... 32767

Default value - 32767

Comments - Upon exceeding the preset value by analog signal the HiHi

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.11. Alarm Hi - engineering units

Performed - Defines Hi alarm level for analog signal value in engineering

function units.

Data type - Number

Range - -32767 ... 32767

Default value - 32767

Comments - Upon exceeding the preset value by analog signal the Hi

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.12. Alarm Lo - engineering units

Performed - Defines Lo alarm level for analog signal value in engineering

function units. **Data type** - Number

Range - -32767 ... 32767

Default value - -32767

Comments Upon exceeding the preset value by analog signal the Lo

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.13. Alarm LoLo - engineering units

Performed Defines LoLo alarm level for analog signal value in

function engineering units.

Number Data type

Range -32767 ... 32767

Default value -32767

Comments Upon exceeding the preset value by analog signal the LoLo

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.14. Alarm hysteresis - engineering units

Performed Defines hysteresis value for analog signal thresholds. The function

value is set in engineering units.

Data type Number 0...65535 Range 100 Default value

Setting hysteresis relevant for signal fluctuations prevents Comments

excessive activations of alarm flags.

7.2.6.2.3.15. Deadband - engineering units

Performed This parameter defines a minimal change of registered function analog signal to react on. Exceeding this value sets a flag (

AN1_DB, AN2_DB and AN3_DB) respective analog input where the change has been detected high. The

flag is reset after one program cycle to low state (0).

Number Data type 0...65535 Range

Default value 100

Comments When set to value 0, the flag will rise upon every detected

> signal change by minimum 1 engineering unit. Deadband flags are dedicated to continuous monitoring of analog

signal changes.

7.2.6.3. Counters (CN1...CN8)

Module's Counters may be used to count any pulses (interpreted as bit or binary input state changes). Counters are equipped with two inputs each. One incrementing and one decrementing the counter's register value.

7.2.6.3.1. Incrementing input

Performed - Defines the bit which state change increments counter value

function by 1

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value - None

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.3.2. Incrementing input's active slope

Performed - Defines incrementing bit's slope activating counter

function incrementing function

Data type - Selection list

Range - *0->1*

logical state change from 0 to 1

1->0

logical state change from 1 to 0

Default value - *0->1*Comments - N/A

ATTENTION!

If bits set for one program cycle are counted (e.g. clock flags) or pulses on binary input set as pulse counter, the right parameter setting is 0->1. With any other selected value measurements will not be performed.

7.2.6.3.3. Decrementing input

Performed - Defines the bit which state change decrements counter

function value by 1

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value - None

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.3.4. Active edge of decrementing input

Performed - Defines decrementing bit's slope activating counter

function decrementing function

Data type - Selection list

Range - 0->1

logical state change from 0 to 1

1->0

logical state change from 1 to 0

Default value - O->1**Comments** - N/A

ATTENTION!

If bits set for one program cycle are counted (e.g. clock flags) or pulses on binary input set as pulse counter, the right parameter setting is 0->1. With any other selected value measurements will not be performed.

7.2.6.4. Timers

Group **Timers** contains configuration parameters of module's timers.

7.2.6.4.1. Synchronous timers (CT1...CT8)

Synchronous timers measure cyclically defined time intervals. They are synchronized with module's real time clock (RTC).

7.2.6.4.1.1. Start

Performed - Defines the synchronization point with RTC

function

Data type - Time

Range - 00:00 - 23:59

Default value - 00:00

Comments - At time defined by this parameter the module will always

generate a pulse. One can make it generate pulse every hour, 15 minutes after the hour elapses (in that case the

parameter Start should have value 00:15)

7.2.6.4.1.2. Interval

Performed function

Defines the interval module's clock should measure.

Data type Selection list

Range Never, 1 min., 2 min., 3 min., 5 min., 10 min., 15 min., 30

min., 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12

hours, 24 hours

Never Default value

Comments Selecting *Never* deactivates the timer

7.2.6.4.1.3. Days of week

Performed function

Defines days of week when the timer is active

Multiple choice field Data type

Range Mo., Tu., We., Th., Fr., Sa., Su.

Default value Mo., Tu., We., Th., Fr., Sa., Su. (all week days selected)

The timer's activity is depending on logical sum of days of Comments

week and days of month. Selecting all week days will make the timer active all of the time. If no days of week are selected the activity of the timer will depend only on days of

month selection.

7.2.6.4.1.4. Days of month

Performed function

Selects days of month when the timer is active.

Data type Multiple choice field Range

1, 2, ... 30, 31, Last

Default value

No day selected (none of month days is selected)

Comments

The timer's activity is depending on logical sum of days of week and days of month. Selecting all month days will make the timer active all of the time. If no days of month are selected the activity of the timer will depend only on days of

week selection.

7.2.6.5. Temperature sensor

MT-723 module is equipped with an integrated temperature sensor, or with optional precise temperature and humidity sensor.

7.2.6.5.1. Alarm Hi

Performed function

Defines the high temperature threshold value. When

exceeded the module rises a TEMP_Hi flag.

Data type Number Range *-20 ... 50* Default value 50

Comments Resetting of the TEMP_Hi flag occurs when the

temperature drops more than half degree below the

threshold value.

7.2.6.5.2. Alarm Lo

Performed Defines the low temperature threshold value. When

function crossed, the module rises a **TEMP_Lo** flag.

Number Data type -20 ... 50 Range

Default value -20

Comments Resetting of the TEMP_Lo flag occurs when the

temperature rises more than half degree above the

threshold value.

7.2.6.6. Vibration sensor (15 input)

Binary input 15 is connected to an internal vibration sensor with contact normally open. This sensor can detect even slight movement of the device. This allows user to detect intrusion into the measurement installation, perform measurements of position only when the unit moves and much more.

Vibration sensor is always on.

Information about the detected vibration is signaled by the activation of VIB bit.

To use this feature binary input 15 Operating mode parameter should be set to any setting but *Inactive*. Full functionality of the binary input is maintained while the state of binary input 15 is analyzed on the presence of vibration. This analysis is done without taking into account limitations imposed by parameters: Minimum pulse length and Filtering constant. Effect on analysis however has setting of Maximum pulse frequency parameter.

7.2.6.6.1. Activity delay [s]

Performed Defines minimum time of vibrations causing setting **VIB** bit

high. **VIB** is bit informing about vibrations. function

Number Data type Range 0 ... 60

Default value

Comments Setting this parameter to *O* causes setting **VIB** high on

every single pulse on 15 binary input.

This parameter is available only when Operating mode of 15

binary input is set to any setting but *Inactive*.

7.2.6.6.2. Activity time [min]

Performed Defines minimum time (in minutes) of lack vibrations function

causing zeroing of VIB bit. VIB is bit informing about

vibrations.

Number Data type

Range - 0 ... 30

Default value - 1

Comments - This parameter is available only when Operating mode of I5

binary input is set to any setting but *Inactive*.

7.2.6.7. Power supply

Groups parameters defining method of monitoring power supply.

7.2.6.7.1. Low voltage alarm

Performed - Defines alarm threshold level of power supply voltage. **function** When the voltage drops to the threshold value, a **LBAT_C**

flag is raised. The alarm is generated for the voltage lower than threshold value. The alarm flag is raised for one

program cycle.

 Data type
 - Number

 Range
 - 2,0 ... 4,0

Default value - 3,0

Comments - The LBAT_C alarm flag is recommended to dispatch the

information about necessity of battery replacement.

7.2.6.7.2. Alarm notifying period

Performed - Defines the interval for generating low power supply voltage

function alarm

Data type - Selection list

Range - 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12

hours, 24 hours

Default value - 24 hours

Comments - When the power supply voltage is lower than the one

defined by <u>Low voltage alarm</u> parameter the module will rise alarm flag with frequency defined by this parameter. When the voltage returns to value above threshold (battery

replaced) the module will stop generating alarms.

7.2.6.8. GPS

Contains parameters controlling optional GPS receiver

7.2.6.8.1. SEL selection bit

Performed - Defines bit used for choosing one from two position

function measurement triggering sources

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

Comments

- None

- If parameter is set to *None* here is only one <u>Bit triggering</u> <u>position measurement</u>. In any other case there are two such parameters: <u>Bit triggering position measurement</u>, <u>when SEL=0</u> and <u>Bit triggering position measurement</u>, <u>when SEL=1</u>.

As a SEL bit you can set e.g. <u>vibration sensor</u> bit (**VIB**), to measure position more often when device is moving. Bit addresses 0...9999 point to input space while addresses 10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.2. Bit triggering position measurement

Performed

Defines bit triggering position measurement

function
Data type

- Selection list or Number

Range

Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

None

Comments

Parameter is visible only when parameter <u>SEL selection bit</u> is

set to *None*.

Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.3. Bit triggering position measurement, when SEL=0

Performed function

- Defines bit triggering position measurement, when SEL bit is

zeroed.

Data type

- Selection list or Number

Range

- Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

None

Comments

- Parameter is visible only when parameter <u>SEL selection bit</u> is

set to any value but None.

Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.4. Bit triggering position measurement, when SEL=1

Performed function

- Defines bit triggering position measurement, when SEL bit is

in high state.

Data type

- Selection list or Number

Range

- Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

- None

Comments

- Parameter is visible only when parameter <u>SEL selection bit</u> is

set to any value but None.

Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.5. Accuracy of position measurement (HDOP)

Performed

Defines border value of HDOP parameter

function

Data type - Number
Range - 1 ... 99
Default value - 25

Comments

GPS receiver will stop position measurement when it will reach set HDOP value or after 4 minutes from beginning of

GPS measurement.

After completion of position measurement $\mathbf{GPS_C}$ bit is set. If module was able to measure position, it sets \mathbf{FIX} bit, and

writes new GPS data to registers.

2.6.8.6. Movement signaling

Performed function

Enables/disables movement detection mechanism

Data type

Selection list

Range

Yes Signaling enabled

No

Signaling disabled

Default value - No

Comments - Setting this parameter to *Yes* makes available additional

parameter - <u>Movement signaling threshold [km]</u> used for determining minimum distance causing movement signaling. Signaling is done by setting **MOV** bit high for one cycle after detecting movement for distance greater than given by <u>Movement signaling threshold [km]</u>

parameter.

7.2.6.8.7. Movement signaling threshold [km]

Performed - Defines minimum movement distance (in km) causing

function movement signaling

 Data type
 - Number

 Range
 - 0,1 ... 65,0

Default value - 1,0

Comments - Signaling is done by setting **MOV** bit high for one cycle after

detecting movement for distance greater than given by

Movement signaling threshold [km] parameter.

Parameter is available only if Movement signaling

parameter is set to *Yes*.

7.2.6.8.8. Geofencing

Performed - Enables/disables geofencing mechanism

function

Data type - Selection list

Range - Yes

Geofencing enabled

No

Geofencing disabled

Default value - No

Comments - Setting this parameter to *Yes* makes available additional

parameters: <u>Base position - latitude</u> and <u>Base position - longitude</u> allowing user to set coordinates of geofencing circle centre and <u>Radius [km]</u> parameter defining

geofencing circle radius.

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

7.2.6.8.9. Base position - latitude

Performed - Allows user to set latitude of geofencing circle centre

function

Data type - Number

Range - -90,00000° (90,00000° N) ... 90,00000° (90,00000° S)

Default value - 0,00000° (0,00000° N)

Comments

Along with <u>Base position - longitude</u> and <u>Radius [km]</u> parameters allows user to define geofencing circle. If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured position is within geofencing circle.

Parameter is available if Geofencing parameter is set to Yes.

7.2.6.8.10. Base position - longitude

Performed function

- Allows user to set longitude of geofencing circle centre

Data type - Number

Range - -90,00000° (90,00000° W) ... 90,00000° (90,00000° E)

Default value - 0,00000° (0,00000° E)

Comments - Along with <u>Base position - latitude</u> and <u>Radius [km]</u>

parameters allows user to define geofencing circle.

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

Parameter is available if **Geofencing** parameter is set to **Yes**.

7.2.6.8.11. Radius [km]

Performed function

Allows user to set radius (in km) of geofencing circle centre

 Data type
 - Number

 Range
 - 0,1 ... 65,0

Default value - 1,0

Comments - Along with Base position - latitude and Base position -

longitude parameters allows user to define geofencing

circle.

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

Parameter is available if **Geofencing** parameter is set to **Yes**.

7.2.6.9. Logger

Contains parameter controlling logger's operation.

7.2.6.9.1. Record validity time

Performed function

 Defines period of collected records validity. All records collected before are considered invalid and will not be

transmitted.

Data type - Number

Range - Unlimited or 1 ... 240

Default value - Unlimited

Comments - After validity period elapsed the records are not deleted.

There is a possibility of reading them on demand.

7.2.6.9.2. Recipient

Performed function

Defines IP address to send Logger's content to.

Data type

- Selection list

Range

- List of authorized IP addresses

Default value

None

Comments

If the Logger is not in use the parameter should have value

of *None*.

7.2.6.9.3. Recipient's UDP port

Performed

function

Defines UDP port to which logger contens will be sent.

Data type - Number

Range - 1024 ...65535

Default value - 7110

•

Comments - One has to remember to configure the receiving side's port

driver MTDataProvider to receive on the same port as set

by this parameter.

7.2.6.9.4. Sending in online mode

Performed function

- Defines the logger sending interval if the module is on line mode. The sending must be in advance triggered by a

relevant event. If the module goes into hibernation the

triggering has to be reactivated.

Data type - Number Range - 1 ... 250

Default value - 7

Comments - If the module is non-stop on line it will send the logger

content after first triggering event and will keep on sending

logger at intervals defined by this parameter.

7.2.7. Events

Group **Events** defines status change of binary inputs (flags, inputs, outputs, bits) as events. Events are used to trigger recording and flushing the logger along with reporting to **MTSpooler** and sending data and SMS messages.

7.2.7.1. Number of events

Performed - Defines the number of events in Events Table

function

Data type - Number Range - 0 ... 64

Default value - 0

Comments - If the value is *O*, Events table is not displayed

7.2.7.2. Events table

Idx. - List indexing number

Name - Friendly name of event used in Rules to define the event

triggering the rule processing Max. length 16 characters.

Triggering bit - Address of bit triggering the event

Name from bit list (see bit list in Appendices) or 0 ... 65535

Triggering edge - Event triggering edge

Selection list

O->1

rising edge (default value)

1->0

falling edge

0 < -> 1

any edge

Records to be -

sent

Toggles on/off sending records written to logger on

occurring event

Default value: ★ (OFF)

Triggering logger transmission

Toggles sending the logger content on/off on occurring

event

Default value: ✗ (OFF)

Update of GPS -

position

Toggles GPS positioning on/off on occurring event

Default value: ★ (OFF)

Comments - The event table appears when defined number of events is

greater than zero. The number of positions on the list equals

defined events number.

Entries on the list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in parameters window.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.8. GSM activities

The group contains parameters defining minimum log-in time in GPRS network after receiving data or SMS message.

7.2.8.1. Active after SMS reception

Performed - Defines GSM activity time after receiving of SMS

function(in minutes)Data type- NumberRange- 0 ... 1080

Default value - 0

Comments - Value other than *0* grants extra time for remote access to

the module for e.g. configuration, data read-out etc.

Increasing activity time shortens battery life time!

7.2.8.2. Active after GPRS frame reception

Performed - Defines GSM activity time after receiving of GPRS frame

function(in minutes)Data type- NumberRange- 0 ... 1080

Default value - 0

Comments - Value other than *O* grants extra time for remote access to

the module for e.g. configuration, data read-out etc.

Increasing activity time shortens battery life time!

7.2.9. Rules

Group Rules contains list of transmission tasks performed in case of fulfillment of defined criteria by internal program. Tasks are divided in two groups:

- SMS sending rules
- <u>Data sending rules</u>

In both cases criteria are defined by employing previously defined **Events**.

7.2.9.1. Sending SMS

Sub-group Sending SMS consists of two parts:

- list of SMS sending rules
- general parameters of all rules

List of SMS sending rules allows max. 32 rules triggering SMS transmission. Entries on the list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in defined rules window.

The number of rules may be defined by setting Number of SMS sending rules

7.2.9.1.1. SMS validity time

Performed

function

Defines validity time of SMS messages

Data type - Number

Range - Unlimited or 1...240

Default value - Unlimited

Comments

If the module cannot send SMS messages (no coverage, no roaming, exceeded SMS limit) they are kept in the memory and will be dispatched at first convenience. This parameter defines maximum time the message waits for the opportunity to be sent. After defined time the messages are deleted.

7.2.9.1.2. Number of SMS sending rules

Performed function

Defines the number SMS sending rules

Data type - Number
Range - 0...32
Default value - 0

Comments - Reducing the rules number does not delete settings of rules

until writing the configuration to the module.

7.2.9.1.3. SMS 1...32

Each SMS sending rule on the list is defined by mandatory parameters like recipient, triggering event and the message text. The maximum number of rules is 32.

7.2.9.1.3.1. Triggering event

Performed function

Assigns which one of previously defined event will trigger

sending of a particular text message.

Data type - Selection list

Range - *None* or names of events from the <u>Events table</u>

Default value - None

Comments - To send the SMS message, Events table must have at least

one event defined

7.2.9.1.3.2. Recipient

Performed function

Assigns a recipient of SMS from defined in Authorized

<u>numbers->Phone</u> list.

Data type - Selection list

Range - *None* or the name from <u>Phone</u> list

Default value - None

Comments - To send the SMS message, the <u>Authorized numbers->Phone</u>

must have at least one phone number defined

7.2.9.1.3.3. Template

Performed function

Defines a template of SMS message

Data type - Alphanumeric array

Range - 0 ... 255 alphanumeric characters (no diacritical signs)

Default value - 0

Comments - SMS messages Template may contain any string of

characters, except diacritical. It may contain mnemonics dynamically replaced at run-time by values drawn from the module e.g.: time, register or logical state of the bit. The syntax of commands is described in detail in Syntax of commands for reading and writing data by SMS paragraph.

7.2.9.1.3.4. Activity period after login

Performed function

Defines how many minutes after login into GSM network in order to send SMS the module remains active.

 Data type
 - Number

 Range
 - 0 ... 1080

Default value - 0

Comments - Any value different than *O* ensures prolonged time for

remote access to the module after sending the SMS or for

reception of SMS sent to the module. Leaving the *O* value makes the module to hibernate immediately after sending the SMS. Extending the activity period reduces battery life time.

7.2.9.2. Sending data

Sub-group Sending consists of two parts:

- list of data sending rules
- general parameters common to all rules on the list

List of data sending rules contains max. 32 rules allowing sending user defined data to appointed IP address. Entries on the list may be easily added by using context menu activated by right mouse button click on any position of the list of rules.

The number of rules may be defined by setting <u>Number of data sending rules</u> parameter.

7.2.9.2.1. Recipient's UDP port

Performed function

- Assigns UDP port number for transmitted data frames

Data type

- Number

Range

1024 ... 65535

Default value

7110

Comments

One has to remember to configure receiving side's driver to listen to the same port number.

7.2.9.2.2. Data validity time

Performed

function

Defines validity time of data, in hours

Data type - Number

Range - Unlimited or 1 ... 240

Default value - Unlimited

Comments - If the module cannot send GPRS data frame (no coverage,

no roaming, no GPRS services) the data is stored in module's memory and will be sent at first convenience. This parameter defines max. storage time until deleting the data.

This parameter does not influence the logger.

7.2.9.2.3. Number of data sending rules

Performed

Defines the n umber of data sending rules

function

 Data type
 - Number

 Range
 - 0 ... 32

Default value - (

Comments - Reducing the rules number does not delete settings of rules

until writing the configuration to the module.

7.2.9.2.4. Data 1...32

Each of rules is defined by mandatory parameters as recipient, triggering event and data format. The maximum number of rules is 32.

7.2.9.2.4.1. Triggering event

Performed function

Assigns which one of previously defined events will trigger

data frame transmission.

Data type - Selection list

Range - None or a name selected from the Event table

Default value - None

Comments - In order to send data there must be at least one event

defined in the Event table

7.2.9.2.4.2. Data format

Performed function

Defines type of transmitted data

Data type - Selection list

Range - Status

Frame containing complete information on module's

state

Xway

Frame containing GPS position data for Xway

vehicle localization system

Spooler

Frame reporting to MTSpooler program that is used for remote configuration of battery powered

modules.

Buffer

Frame containing selected registers of the module. This type of frame may be used to communicate

with other MT modules.

Default value - Status

Comments - Depending on selected frame type some parameters may

become unavailable

7.2.9.2.4.3. Recipient

Performed function

Defines a particular recipient of data previously defined on

<u>Authorized numbers->IP</u> list

Data type - Selection list

Range - *None* or the name from <u>IP</u> list

Default value - None

Comments - In order to send data there must be at least one address

defined on the <u>Authorized numbers->IP</u> list.

This parameter is unavailable when selected $\underline{\text{Data format}}$ is Spooler. In this particular case the recipient is defined by

Sooler IP located in GPRS group parameters.

7.2.9.2.4.4. Activity period after login

Performed function
Data type

Range

Defines how long time after GPRS log-in the module remains

active.
Number
0...1080

Default value - 0

Comments

 Value other than O grants extra time for remote access to the module for e.g. configuration, data read-out, SMS

reception e.t.c. Increasing activity period shortens battery life time! Leaving it at *O* makes the module hibernate

immediately after performing scheduled tasks.

7.2.9.2.4.5. Address space

Performed function

- Defines module's memory space, where data prepared for

transmission reside

Data type - Selection list

Range - IREG

Analog inputs space (input registers)

HREG

Internal registers space (holding registers)

Default value - IREG

Comments - This parameter is accessible only when Buffer <u>data format</u>

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.2.9.2.4.6. Buffer start address

Performed Points out the address of the first register of the array to be

function sent. Number Data type 0 ... 31 Range Default value

Comments This parameter is accessible only when Buffer data format

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.2.9.2.4.7. Buffer size

Performed Defines the number of consecutive register to be sent.

function Data type

Number

0

Range 1...32 **Default value** 1

This parameter is accessible only when Buffer data format Comments

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.2.9.2.4.8. Receiver's buffer address in HREG address space

Performed Defines the address in receiving unit's function registers(holding registers), where the buffer is going to be

written.

Number Data type 0...9999 Range

Default value 96

Comments This parameter is accessible only when Buffer data format

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.3. Presets

In order to expand module's application areas it is furbished with initial settings for some resources. It is necessary when the module is operating as a pulse counter for measuring devices (e.g. water consumption meter with pulse output), having initial count other than zero. Due to Presets, the actual value of (totalizer) register may be equalized with mechanical counter of the device, thus not disturbing the functionality of the system.

In order to set **Presets**, go to menu *Configuration* and select the *Initial settings* option or click the icon on the toolbar.

Presets

The **Presets** icon is active only when the module is connected and selected transmission channel is not the Spooler. Sending data in **Presets** mode is possible only as sending changes. Bear in mind that sending configuration changes result in immediate and irrevocable updating of the resource.

When **Presets** mode is selected all configuration groups disappear from the panel and only parameters that may have initial value set are displayed. For MT-723 module the parameters are Counters CN1...CN8.

7.3.1. Counters (CN1...CN8)

Name of the - Counter CN1...CN8

resource

Data type - Number

Range - -2 147 483 647...2 147 483 647

After inserting new values of the resource the background becomes highlighted yellow. This means that the value has been changed and is selected to be sent to the module.

Parameter	Value
CN1	-12
CN2	2147483647
CN3	-2147483648
CN4	516
CN5	214
CN6	83647
CN7	-2183647
CN8	16

8. Maintenance and problem solving

8.1. LED signaling

MT-723 is equipped with six LED indicators reflecting the module state.

- **PWR** LED indicates current Power supply and module's state (low and high energy consumption state called also sleep and activity state)
- ERR LED indicates abnormal states
- **STA** LED indicates GSM/GPRS status (GSM login as well as GPRS login, roaming, and signal level)
- TX LED indicates Data or SMS transmission
- RX LED indicates data or SMS reception
- USB LED indicates USB port state

The current state is signaled by flashes varying in length and number.

8.1.1. PWR LED

Signals emitted by PWR LED identify current power supply and module's state. See the table below.

8.1.2. LED indicators

LED signaling consists of five-second "messages" comprising four basic signals differing by lit time of LED indicators. Tables below display all states signaled.

Legend	
0	LED lit stable
•	long flash (200ms)
short flash (20ms)	
•	LED off

ERR LED		
0	critical error	
•	transmission error - SMS or GPRS transmission impossible	
0	missing, defective or blocked SIM card	
$\mathbb{O} \mathbb{O}$	the card requires PIN code	
$\mathbb{O} \mathbb{O} \mathbb{O}$	GSM error	
800	GPRS error	
880	APN login error	
888	wrong PIN	

STA LED	
•	PIN missing in configuration (does not apply for pin-less cards)
0	PIN received, module not logged in GSM network
•	logged in GSM network, very weak signal (< -99 dBi)
\mathbb{O} \mathbb{O}	logged in GSM network, very weak signal (-9783 dBi)
$\mathbb{O} \oplus \mathbb{O}$	logged in GSM network, good signal (-8167 dBi)
	logged in GSM network, very good signal (> -65 dBi)
$\mathbb{O} \mathbb{O}$	logged in foreign GSM network (roaming), very weak signal (< -99 dBi)
$\mathbb{O} \mathbb{O} \mathbb{O}$	logged in foreign GSM network (roaming), very weak signal (-9783 dBi)
	logged in foreign GSM network (roaming), good signal (-8167 dBi)
880	logged in foreign GSM network (roaming), very good signal (> -65 dBi)

TX and RX LEDs	
sending (TX)/receiving (RX) SMS messages	
•	sending (TX)/receiving (RX) GPRS data frame

USB LED	
data packet sent via USB port	
0	port in offline state

See the example of **STA LED** signaling logging in GSM/GPRS in roaming with very good signal.

8.2. Unblocking the SIM card

Triple insertion of wrong PIN code results in blocking the SIM card. Blocked card renders SMS and data transmission impossible. Blocked SIM card is signaled by **ERR LED**.

In order to unblock the SIM card do the following:

- power the module off
- take the SIM card off
- insert the SIM card to the mobile phone that accepts the SIM issued by your operator
- start the phone and insert the PUK code followed by PIN code
- power the module on
- insert proper PIN into configuration
- power the module off
- place the SIM card in the module
- power the module on

Executing the procedure unblocks the SIM card and enables module's proper operation.

9. Technical parameters

9.1. General

Dimensions (height x width x depth)	80 x 140 x 65 mm
Weight (with batteries)	680 g
Mounting method	2 ø5 mm holes
Operating temperatures	-20°C+55°C
Protection class	IP68

9.2. Modem GSM/GPRS

Modem type		WAVECOM WIRELESS CPU
GSM		quad-band (850/900/1800/1900)
GPRS		Class 10
Frequency range:		
GSM 850 MHz	•	Transmitter: from 824 MHz do 849 MHz Receiver: from 869 MHz do 894 MHz
EGSM 900 MHz		Transmitter: from 880 MHz do 915 MHz Receiver: from 925 MHz do 960 MHz
DCS 1800 MHz		ansmitter: from 1710 MHz do 1785 MHz Receiver: from 1805 MHz do 1880 MHz
PCS 1900 MHz		Transmitter: 1850 MHz - 1910 MHz Receiver: 1930 MHz - 1990 MHz

Transmitter peak power	
GSM 850 MHz/EGSM900 MHz)	33 dBm (2W) – station of class 4
DCS 1800 MHz/PCS1900 MHz)	30 dBm (1W) – station of class 1
Modulation	0,3 GMSK
Channel spacing	200 kHz
Antenna	50 Ω

9.3. Binary/pulse inputs I1...I6

Contacts polarization	3,0 V
Counting frequency (fill 50%)	250 Hz max.
Minimal pulse length - operating in pulse input mode	0,5 ms
Minimal pulse length - operating in binary input mode	100 ms

9.4. NMOS outputs Q1, Q2

Maximum voltage	30 V
Maximum current	250 mA
Switch off current	<50 μΑ
Resistance	1 Ω

9.5. Analog inputs AN1...AN3

Туре	voltage, differential
Measuring range	0 - 5.0 V
Input resistance	>600 kΩ typically
Resolution	12 bits
Accuracy at 25°C temperature	±0.1 %
Accuracy at full temperature range	±0.3 %

9.6. Power output Vo

Voltage range	05.0V
Resolution	0.1V
Accuracy	2 %
Maximum current	50 mA

9.7. Logger

Memory type	FLASH
Max. records number	10 240
Min. recording time	30 ms

9.8. GPS receiver

Туре	ANTARIS 4
Frequency	L1
Encoding	C/A
Number of channels	16
Accuracy	2.5 m CEP (3.0 m SEP)
Sensitivity	- 148 dBm

9.9. Temperature sensor

Туре	Integrated sensor
Accuracy	±3°C

9.10. Power supply

Acceptable power supply voltage range	7 - 30 V
Mean current consumption in sleep mode (at 12 V)	<250 µA
Mean current consumption with active GSM modem (at 12 V)	25 mA
Maksymalny chwilowy prąd w trybie aktywności modemu GSM (at 12 V)	500 mA
Internal battery type	lithium-thionyl chloride
Internal battery nominal voltage (at 2 mA, 20°C)	3.6 V
Internal lithium battery nominal capacity (at 15 mA, 20°C, 2.0 V cut off)	

9.11. Enclosure

Mechanical endurance IK (EN 62262)	IK 08
Electrical isolation	Total isolation
Halogen-less (DIN/VDE 0472, Part 815)	Yes
UV resistance	UL 508
Flammability Class (UL 746 C 5):	UL 94 5V
Glowing rod test (IEC 695-2-1) °C	960
NEMA Standard	NEMA 1, 4X, 6, 6P, 12, 13
Material	Polycarbonate
Material of lid screws	Polyamide
Gasket material	Polyurethane

Dimensions without hanger	
Length	140 mm
Width	80 mm
Height	65 mm

Dimensions with hanger	
Length	174 mm
Width	80 mm
Height	70 mm

9.12. Drawings and dimensions

NOTICE!!!
All dimensions in millimeters!

10. Safety informations

10.1. Working environment

When deploying telemetry modules one has to observe and comply to local legislation and regulations. Using the telemetry module in places where it can cause radio noise or other disturbances is strictly prohibited.

10.2. Electronic equipment

Thou most of modern electrical equipment is well RF (Radio Frequency) shielded there is no certainty that radio waves emitted by the telemetry module's antenna may have negative influence on its function.

10.2.1. Heart pacemakers

It is recommended that the distance between the antenna of telemetry module and the Heart Pacemaker is greater than 20 cm.

This distance is recommended by manufacturers of Pacemakers and in full harmony with results of studies conducted independently by Wireless Technology Research.

10.2.2. Hearing aids

In rare cases the signal emitted by the telemetry module's antenna may disturb hearing aids functions. Should that occur, one has to study detailed operating instructions and recommendations for that particular product.

10.2.3. Other medical equipment

Any radio device including the telemetry module may disturb the work of electronic medical equipment.

When there is a need of installing telemetry module in vicinity of medical equipment one has to contact the manufacturer of this equipment in order to make sure that the equipment is adequately protected against interference of radio frequency waves (RF).

10.2.4. RF Marked equipment

The restriction against installing telemetry modules in areas marked as radio frequency (RF) prohibition zones must be unconditionally observed.

10.3. Explosive environment

Installation of telemetry modules in the environment where explosion hazard is present is not permitted. Usually, but not always, these places are marked with warning signs. Where there is no marking do not install telemetry modules at liquid or gas fuels stores, inflammable materials stores, nor places contaminated with metal or wheat dust.

11. Appendices

11.1. SMS commands syntax

MT-723 can send SMS messages including mnemonics replaced with numerical values at the moment of dispatch. It can respond to queries sent via SMS. Bear in mind that the module receives SMS messages only when it is logged in the network.

In the table you will find all available commands and mnemonics for SMS. Bold types represent mandatory commands while italics represent parameters added by user. Square brackets embrace optional elements.

Read commands:

Commands may be used as mnemonics in SMS messages sent as a result of <u>Rules</u> processing.

#BAT	battery voltage
#CNTcounter_number	read counter status
#IRdecimal_register_address	read analog register value (input registers)
#HRdecimal_register_address	read internal register value (holding registers)
#IBdecimal_bit_address	read bit from analog registers space (input registers)
#HBdecimal_bit_address	read bit from internal registers space (holding registers)
#GPST	read GPS position time stamp (UTC)
#GPSD	read GPS position date stamp (UTC)
#GPSP	read GPS position
#I binary_input_number	read binary input state
#Qbinary_output_number	read binary output state
#ANanalog_input_number	read analog input register value (does not perform the measurement)
#FLbinary_input_number	read flow register value (does not perform the flow calculation)
#GSM	read signal level
#SN	read serial number
#MOD	read module type
#NAME	read module name
#VER	read module firmware version
#TIME	read module's time
#DATE	read module's date
#IP	read module's current IP address (if not logged to GPRS answer is 0.0.0.0)

Write commands:

#CNTcounter_number=	write new value to counter register (calibration)
#HR decimal_register_address=	write new value to internal register (holding registers)
#HBdecimal_bit_address=	write bit value to internal register space (holding registers)
#Qbinary_output_number=	set binary output (does not work if the output is controlled by other bit than Q1 or Q2)

Special commands:

![password]ACTIVATE HH: MM mm	this command makes module activate and log into GPRS at HH: MM for mm minutes (zeroes at the beginning of hour and/or minutes can be omitted). The module sends confirmation with date and time of activation and module's timestamp. This activation does not make module to report to MTSpooler. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]GETIP	read module's current IP address (if not logged to GPRS answer is 0.0.0.0). password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]ONLINE[mmmm]	extends module activity time by <i>mmmm</i> minutes in range 11092. If this parameter is omitted activity is prolonged by 3 minutes. In response module sends time remaining to go asleep. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]CLRLOG	delete all stored in FLASH memory events and logger records. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]CLRCFG	clear modules configuration. All but parameters essential to log module to GSM/GPRS network and for remote configuration are set to default values. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]ENPHONE [el_number]	add telephone number to authorized telephone numbers. Authorization expires when module enters sleep mode.

7
password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
add IP address to authorized IP's (configuration only). Authorization expires when module enters sleep mode. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.

Comments:

Each special SMS command (except for ![password]ONLINE[mmmm<3]) prolongates activity of module by 3 minutes.

All SMS commands, including the incorrect commands, are answered by SMS.

To prevent module from sending a reply to the command put \$ sign on beginning of SMS (not applicable to special SMS commands).

All module's responses are preceded by > sign.

If the module cannot interpret the command the response is *>ERR*.

If attempted write value is out of range the response is >command=ERR (eg. >#CNT1=ERR).

To pass the # sign in SMS type ##.

11.2. Memory map

All accessible from remote resources of MT-723 module were collected in four address spaces: binary inputs, analog inputs, binary outputs and internal registers. Spaces of binary inputs and analog inputs and spaces of binary outputs and internal registers are connected in pairs and contain the same resources. The difference between spaces is in the way of accessing the resources - for binary inputs and outputs are used for accessing individual bits and groups of bits while analog inputs and internal registers address spaces allow access to the full registers.

This difference results in a different way addressing. In the internal registers and analog input address spaces each address is assigned to the each register while the for binary inputs and outputs address spaces are each address corresponds to individual bit. The memory map tables are arranged by their addresses for addressing registers. To calculate the addresses of the individual bits in the binary spaces, use the following equation:

For example, in the MT_BITS register from analog inputs address space (address 6) on position 7 is the KEY_P bit indicating deactivation of reed switch input. Using that formula, you can specify the address of KEY_P bit in binary inputs address space as follows:

$$6 * 16 + 7 = 103$$
.

Bits that are typed in bold in the memory map tables are refreshed in each program cycle, irrespective of fact if modem is on or off. It is recommended to use only those bits for generating events that trigger a measurement or data/SMS sending rule. In case of using those bits for such purposes, expected action of module will be executed only after GSM modem start triggered by other event.

11.2.1. Analog inputs/binary inputs address space

	Analog inputs address space (read only), Modbus RTU functions (2,4)																		
A	ddress								В	its								None	December 1
DEC	HEX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Name	Description
0	0x0000													RUN	FS	1	0	PRG_STATE	FS - first scan (first cycle) RUN - program running
1	0x0001	2°	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2 ⁻⁸	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	RTC_FSEC	RTC (UTC time) - second fraction
2	0x0002	hour (023)							minute (059)				second / 2 (029)					RTC_HMS	RTC (UTC time) - RTC time second - youngest bit in RTC_FSEC (address 20)
3	0x0003			year -	2000 ((0127)		m	onth - 1	l (01	1)		day	- 1 (0.	30)		RTC_YMD	RTC (UTC time) - date
4	0x0004	H int32(LoHi) I OI								ON_TMR	Uptime [s] from connecting to power supply								
5 6	0x0005	R	R	1 -	н				F		Р	S	V	1 _	G	U			Module status bits
	0x0006	тс - 0 к	T C C	Z O N E C	REG IC	C F G O K	G P S IC	AN IC	C	K E Y — P	F	L E E P	0	GPS	S M	SB	B A T	MT_BITS	BAT = 1 - battery OK USB = 1 - powered from USB GSM = 1 - GSM modem on GPS = 1 - GPS on Vo = 1 - Vo output on SLEEP = 1 - set for 1 cycle after awaking (1 cycle) PF = 1 - set for one cycle after power restore (1 cycle) KEY_P = 1 - reed switch input deactivated (1 cycle) FL_C = 1 - new flow value computed (1 cycle) AN_C = 1 - analog inputs measurement finished (1 cycle) GPS_C = 1 - new data from GPS (1 cycle) CFG_OK = 1 - module configuration OK HREG_C = 1 - remote HREG registers change (1 cycle) ZONE_C = 1 - timezone change (1 cycle) RTC_C = 1 - RTC clock change (1 cycle) RTC_OK = 1 - RTC clock set

7	0x0007											V I B	O P E N	T E M P H i	T E M P L o		L B A T C	MT_ALM	Alarm bits LBAT_C = 1 - low battery voltage alarm (1 cycle) TEMP_Lo = 1 - low temperature alarm TEMP_Hi = 1 - high temperature alarm OPEN = 1 - open enclosure alarm VIB = 1 - vibrations alarm
8	0x0008	KEY										16	15	14	13	12	I1	BIN	Ix - binary inputs states KEY - reed switch input state
9	0x0009	СТ8	CT7	СТ6	CT5	CT4	СТЗ	CT2	CT1	CK8	CK7	CK6	CK5	CK4	СКЗ	CK2	CK1	CLOCK	Timer flags (1 cykl)
10	0x000A								int1	5								FL1	Flow I1
11	0x000B								int1	5								FL2	Flow I2
12	0x000C								int1	5								FL3	Flow 13
13	0x000D								int1	5								FL4	Flow 14
14	0x000E								int1	5								FL5	Flow 15
15	0x000F		int16 AN1 Analog input AN1																
16	0x0010		int16 AN2 Analog input AN2																
17	0x0011	int16 AN3 Analog input AN3																	
18	0x0012	AN3_ LoLo	AN2_ LoLo	AN1_ LoLo	FL5_ LoLo	FL4_ LoLo	FL3_ LoLo	FL2_ LoLo	FL1_ LoLo	AN3 _Lo	AN2 _Lo	AN1 _Lo	FL5 _Lo	FL4 _Lo	FL3 _Lo	FL2 _Lo	FL1 _Lo	ALM_L	Low alarm bits
19	0x0013	AN3_ HiHi	AN2_ HiHi	AN1_ HiHi	FL5_ HiHi	FL4_ HiHi	FL3_ HiHi	FL2_ HiHi	FL1_ HiHi	AN3 _Hi	AN2 _Hi	AN1 _Hi	FL5 _Hi	FL4 _Hi	FL3 _Hi	FL2 _Hi	FL1 _Hi	ALM_H	High alarm bits
20	0x0014									AN3 _DB	AN2 _DB	AN1 _DB	FL5 _DB	FL4 _DB	FL3 _DB	FL2 _DB	FL1 _DB	ALM_DB	Deadband bits (1 cycle)
21	0x0015								int16	5								VBAT	Battery voltage [mV]
22	0x0016								int16	5								TEMP	Temperature x 0,1 [°C]
23	0x0017																		
24	0x0018			SY	/G_LEV	' (010	0)			S I M I E R R	P I N IERR	-	-	A P N	G P R S	R O A M I N G	G n M	GSM_STATE	GSM status bits SYG_LEV = GSM signal strength [%] SIM_ERR = 1 - error or no SIM card PIN_ERR = 1 - wrong PIN APN = 1 - module logged into APN GPRS = 1 - GPRS available ROAMING = 1 - module in roaming GSM = 1 - module registered in GSM (range OK)
25	0x0019	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2 ⁻⁸	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	GPS_FSEC	GPS timestamp (format same as RTC)
26	0x001A		ho	our (0	23)			n	ninute	(059)				secon	d / 2 (0	029)		GPS_HMS	
27	0x001B			year -	2000 (0127)			mo	onth - 1	(01	1)		day	- 1 (0.	30)		GPS_YMD	

28	0x001C		Latitude		GPS_LAT	Latitude in degrees				
29	0x001D									
30	0x001E		Longitude	Longitude in degrees						
31	0x001F	Longitude (LoHi) GPS_LONG GPS_LONG								
32	0x0020		Course over gro		GPS_COG	Course in degrees (0° - N, 90° - E, 180° - S, 270° - W)				
33	0x0021		Spec	ed					GPS_SPD	Speed [km/h]
34	0x0022	F I X	HDOP (099)	M O V	G E O F 	G E O F	-	SAT (015)		GPS status SAT - number of satellites (max 15) GEOF = 1 - position outside geofencing border GEOF_C = 1 - position outside geofencing border (1 cycle) MOV = 1 - movement detected (1 cycle) HDOP - accuracy of position measurement (099) FIX = 1 - position found (1 cycle)
35	0x0023		int1	6					BAT_ACT	Time on battery [h] (rested after battery disconnection)
36	0x0024		-						-	Reserved
37	0x0025		int1	6					VO_ACT	Timer of Vo activity [m] (rested after battery disconnection)
38	0x0026		int1	6					GPS_ACT	Timer of GPS receiver activity [m] (rested after battery disconnection)
39	0x0027		int1	6						Timer of GSM modem activity [m] (rested after battery disconnection)
40	0x0028		int1	6					_	GSM modem starts counter (rested after battery disconnection)

11.2.2. Internal registers/binary outputs address space

	Internal registers address space (read/write), Modbus RTU functions (read - 1, 4; write - 5, 6, 15, 16)																		
Ad	dress								Bit	ts								Name	Description
DEC	HEX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ivame	Description
0	0x0000															Q1	Q2	BOUT	Qx - outputs steering bits. If set to 1 output is set high. When read show current output state.
1	0x0001																		Reserved
2	0x0002		32-bit general purpose counter																
3	0x0003		int32(LoHi) CNT1																
4	0x0004		int32(LoHi) 32-bit general purpose counter																
5	0x0005		int32(LoHi) CNT2																
6	0x0006	int32(LoHi) 32-bit general purpose counter																	
7	0x0007		int32(LoHi) CNT3																
8	0x0008								int32(I ~Ui)								CNT4	32-bit general purpose counter
9	0x0009								111132(шпі)								CIVI 4	
10	0x000A								int32(I ∿⊓!)								CNT5	32-bit general purpose counter
11	0x000B								111132(LUIII)								CIVIO	
12	0x000C								int32(I ∿⊓!)								CNT6	32-bit general purpose counter
13	0x000D								111132(LUIII)								CIVIO	
14	0x000E								int32(l oHi)								CNT7	32-bit general purpose counter
15	0x000F								111132(LUI II)								CIVI /	
16	0x0010								int32(l oHi)								CNT8	32-bit general purpose counter
17	0x0011								111132(LUIII)								CIVIO	

11.3. Bit list

During its operation **MT-723** is setting a series of binary variables associated with the I/O and module diagnostics. They can be used for trigger events and measurements. **MTManager2.0**, for user convince, have implemented list of predefined bits.

Bit name	Description
KEY_P	Activation of reed switch input. Bit set for one program cycle - events only on rising edge.
FL_C	New flow value computed. Bit set for one program cycle - events only on rising edge.
AN_C	Analog inputs measurement finished. Bit set for one program cycle - events only on rising edge.
GPS_C	New data from GPS. Bit set for one program cycle - events only on rising edge.
LBAT_C	Low battery voltage alarm. Bit set for one program cycle - events only on rising edge.
TEMP_Lo	Low temperature alarm
TEMP_Hi	High temperature alarm
OPEN	Open enclosure alarm (1 - enclosure open)
1116	Binary inputs 1116
CT1CT8	Binary outputs Q1Q2
AN1_LoLoAN3_LoLo	Analog inputs alarm bits - LoLo alarm level reached
AN1_LoAN3_Lo	Analog inputs alarm bits - Lo alarm level reached
AN1_HiAN3_Hi	Analog inputs alarm bits - Hi alarm level reached
AN1_HiHiAN3_HiHi	Analog inputs alarm bits - HiHi alarm level reached
Q1Q2	Binary outputs Q1Q2

More information about all available bits can be found in Memory map.

Telemetry Module MT-7&3 User Manual

GSM/GPRS Telemetry Module for monitoring and control

Class 1 Telecommunications Terminal Equipment for GSM 850/900/1800/1900

MT-723

© 2011 Inventia Ltd.

Wszelkie prawa zastrzeżone. Żaden fragment niniejszego dokumentu nie może być powielany lub kopiowany w żadnej formie bez względu na stosowaną technologię – graficzną, elektroniczną lub mechaniczną, włączając fotokopiowanie i/lub zapis cyfrowy, również w systemach przechowywania i wyszukiwania dokumentów – bez pisemnej zgody Wydawcy.

Nazwy produktów wymienionych w niniejszym dokumencie mogą być Znakami Towarowymi i/lub zastrzeżonymi Znakami Towarowymi należącymi do odpowiednich Właścicieli. Wydawca i Autor oświadczają, że nie roszczą do tych znaków towarowych żadnych praw.

Pomimo, że niniejsze opracowanie tworzone było z zachowaniem wszelkiej należytej staranności, zarówno Wydawca jak i Autor nie ponoszą żadnej odpowiedzialności za błędy lub pominięcia w jego treści jak również za straty wynikłe z wykorzystania zawartej w niniejszym opracowaniu informacji lub ewentualnie towarzyszącego jej oprogramowania. W żadnym wypadku Wydawca lub Autor nie będą odpowiedzialni za utratę zysku lub inne straty, w tym handlowe, spowodowane lub rzekomo związane, bezpośrednio lub pośrednio, z niniejszym opracowaniem.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Publisher:

INVENTIA Sp. z o.o. ul. Kulczyńskiego 14 02-777 Warszawa Tel: +48 22 545-32-00 inventia@inventia.pl www.inventia.pl

Version:

1.00 Warsaw, June 2011

MTC Compatibility:

1.00

INDEX

1. MODULE'S DESTINATION	7
2. HOW TO USE THE MANUAL	7
3. GSM REQUIREMENTS	8
4. MODULE'S DESIGN	8
4.1. MODULE'S TOPOGRAPHY	8
4.2. Resources	g
4.2.1. Binary inputs	9
4.2.2. Binary outputs	11
4.2.3. Analog inputs	
4.2.4. Power output Vo (analog sensors supply)	
4.2.5. Temperature sensor	
4.2.6. Vibration sensor	
4.2.7. Real Time Clock	
4.2.8. Timers	14
4.2.9. Counters	
4.2.10. Logger	
4.2.11. GPS (optional)	
4.3. USB	15
4.4. SIM CARD	16
4.5. POWER SUPPLY	17
4.6. LED INDICATORS	19
4.7. GSM ANTENNA	20
4.8. REED SWITCH INPUT	
4.9. ENCLOSURE	22
5. CONNECTION DIAGRAMS	23
5.1. BINARY INPUTS	23
5.2. BINARY OUTPUTS	24
5.3. Analog inputs	26
5.4. GSM ANTENNA	29
5.5. GPS ANTENNA	31
5.6. SIM CARD INSTALLATION	32
5.7. POWER SUPPLY	33
5.8. Installation	34
6. FIRST START OF THE MODULE	35
7. CONFIGURATION	36
7.1. GENERAL INFORMATION	36
7.2. PARAMETER GROUPS	36
7.2.1. Header group	37
7.2.1.1. Module name	
7.2.1.2. Module type	
7.2.1.3. IMEI number	
7.2.1.4. SIM card's number	
7.2.1.5. Module's serial number	
7.4.1.0. IVIOUEIII IIIIIIWAIE VEISIUII	30

7.2.1.7. Module's firmware version	
7.2.1.8. Configuration file version	
7.2.1.9. Configuration identifier	
7.2.1.10. Last configuration date	
7.2.1.11. Last read device time	
7.2.2. General	
7.2.2.1. PIN code of the SIM card	
7.2.2.2. Configuration password	
7.2.2.3. Configuration read disable	
7.2.2.4. Time synchronization	
7.2.2.5. Using GPRS	
7.2.3. SMS	
7.2.3.1. Daily SMS limit	
7.2.3.2. Number of SMS sending retries	
7.2.3.3. SMS in roaming	
7.2.3.4. SMS limit alert	
7.2.3.5. SMS limit alert recipient	
7.2.3.6. Response to empty SMS	
7.2.4. GPRS	_
7.2.4.1. APN name	
7.2.4.2. APN user name	
7.2.4.3. APN password	
7.2.4.4. Device identifier	
7.2.4.5. Sender IP address control	
7.2.4.6. Module IP	
7.2.4.7. Parameter - Force IP (0.0.0.0 – DHCP)	
7.2.4.8. Spooler IP	
7.2.4.9. GPRS transmission retries number	
7.2.4.10. Transmission timeout	
7.2.4.11. GPRS testing address (ping)	
7.2.4.12. GPRS testing time	
7.2.4.13. GPRS roaming	
7.2.5. Authorized numbers	
7.2.5.1. Number of phone numbers	
7.2.5.2. Number of IP addresses	
7.2.5.3. Phone	
7.2.5.4. IP	
7.2.6. Resources	
7.2.6.1. Internal resources Modbus ID	
7.2.6.2. Terminals	
7.2.6.2.1. Binary (I1I6)/pulse inputs (I1I5)	
7.2.6.2.1.1. Maximum pulse frequency	
7.2.6.2.1.2. Bit triggering flow calculation	
7.2.6.2.1.3. Name	
7.2.6.2.1.4. Operating mode	
7.2.6.2.1.5. Filtering constant	
7.2.6.2.1.6. Dynamic pull-up	
7.2.6.2.1.7. Minimum pulse length	
7.2.6.2.1.8. Slope	
7.2.6.2.1.10. Flow scaling	
7.2.6.2.1.10. Flow scaling	
7.2.6.2.1.11. Pulse weight - engineering units	
7.2.6.2.1.12. Alarm Hi - engineering units	
7.2.0.2.1.13. Alai III I II - Eligiileei IIIg uiilis	

7.2.6.2.1.14. Alarm Lo - engineering units	FO
7.2.6.2.1.15. Alarm LoLo - engineering units	
7.2.6.2.1.16. Alarm hysteresis - engineering units	
7.2.6.2.1.17. Deadband - engineering units	
, , , , , , , , , , , , , , , , , , , ,	
7.2.6.2.2.1. Name	
7.2.6.2.2.2. Controlling bit	
7.2.6.2.2.3. Pulse length	
7.2.6.2.3. Analog inputs (AN1AN3)	
7.2.6.2.3.1. Sensor powering voltage Vo	
7.2.6.2.3.2. Measurement delay after activating Vo	
7.2.6.2.3.3. Triggering bit	
7.2.6.2.3.4. Name	
7.2.6.2.3.5. Engineering units	
7.2.6.2.3.6. Low reference	
7.2.6.2.3.7. Low reference - engineering units	
7.2.6.2.3.8. High reference	
7.2.6.2.3.9. High reference - engineering units	
7.2.6.2.3.10. Alarm HiHi - engineering units	
7.2.6.2.3.11. Alarm Hi - engineering units	
7.2.6.2.3.12. Alarm Lo - engineering units	
7.2.6.2.3.13. Alarm LoLo - engineering units	
7.2.6.2.3.14. Alarm hysteresis - engineering units	
7.2.6.2.3.15. Deadband - engineering units	
7.2.6.3. Counters (CNT1CNT)	
7.2.6.3.1. Incrementing input	
7.2.6.3.2. Incrementing input's active slope	
7.2.6.3.3. Decrementing input	
7.2.6.3.4. Active edge of decrementing input	
7.2.6.4. Timers	
7.2.6.4.1. Synchronous timers (CT1CT8)	
7.2.6.4.1.1. Start	
7.2.6.4.1.2. Interval	
7.2.6.4.1.3. Days of week	
7.2.6.4.1.4. Days of month	
7.2.6.4.2. Asynchronous timers (CK1CK8)	61
7.2.6.4.2.1. Period [s] (0 – inactive)	
7.2.6.5. Temperature sensor	
7.2.6.5.1. Alarm Hi	62
7.2.6.5.2. Alarm Lo	62
7.2.6.6. Vibration sensor (I5 input)	
7.2.6.6.1. Activity delay [s]	62
7.2.6.6.2. Activity time [min]	63
7.2.6.7. Power supply	63
7.2.6.7.1. Low voltage alarm	63
7.2.6.7.2. Alarm notifying period	
7.2.6.8. GPS	64
7.2.6.8.1. SEL selection bit	
7.2.6.8.2. Bit triggering position measurement	64
7.2.6.8.3. Bit triggering position measurement, when SEL=0	
7.2.6.8.4. Bit triggering position measurement, when SEL=1	65
7.2.6.8.5. Accuracy of position measurement (HDOP)	65
2.6.8.6. Movement signalling	
7.2.6.8.7. Movement signaling threshold [km]	66
7.2.6.8.8. Geofencing	66

7.2.6.8.9. Base position - latitude	
7.2.6.8.10. Base position - longitude	67
7.2.6.8.11. Radius [km]	67
7.2.6.9. Logger	67
7.2.6.9.1. Record validity time	68
7.2.6.9.2. Recipient	68
7.2.6.9.3. Recipient's UDP port	68
7.2.6.9.4. Sending in online mode	68
7.2.7. Events	69
7.2.7.1. Number of events	69
7.2.7.2. Events table	69
7.2.8. GSM activities	70
7.2.8.1. Active after SMS reception	70
7.2.8.2. Active after GPRS frame reception	70
7.2.9. Rules	70
7.2.9.1. Sending SMS	71
7.2.9.1.1. SMS validity time	
7.2.9.1.2. Number of SMS sending rules	71
7.2.9.1.3. SMS 132	72
7.2.9.1.3.1. Triggering event	72
7.2.9.1.3.2. Recipient	72
7.2.9.1.3.3. Template	72
7.2.9.1.3.4. Activity period after login	72
7.2.9.2. Sending data	73
7.2.9.2.1. Recipient's UDP port	73
7.2.9.2.2. Data validity time	74
7.2.9.2.3. Number of data sending rules	74
7.2.9.2.4. Data 132	74
7.2.9.2.4.1. Triggering event	
7.2.9.2.4.2. Data format	
7.2.9.2.4.3. Recipient	
7.2.9.2.4.4. Activity period after login	
7.2.9.2.4.5. Address space	
7.2.9.2.4.6. Buffer start address	
7.2.9.2.4.7. Buffer size	
7.2.9.2.4.8. Receiver's buffer address in HREG address space	
7.3. Presets	
7.3.1. Counters (CNT1CNT8)	77
8. MAINTENANCE AND PROBLEM SOLVING	77
8.1. LED SIGNALING	
8.1.1. PWR LED	78
8.1.2. LED indicators	79
8.2. Unblocking the SIM card	81
9. TECHNICAL PARAMETERS	81
9.1. GENERAL	0.4
9.2. MODEM GSM/GPRS	
9.3. BINARY/PULSE INPUTS I1I6	
9.4. NMOS OUTPUTS Q1, Q2	
9.5. Analog inputs AN1AN3	
9.6. Power output Vo	
9.7. LOGGER	83

9.8. GPS receiver	83
9.9. Temperature sensor	83
9.10. POWER SUPPLY	84
9.11. ENCLOSURE	84
9.12. Drawings and dimensions	85
10. SAFETY INFORMATION	85
10.1. Working environment	85
10.2. ELECTRONIC EQUIPMENT	85
10.2.1. Heart pacemakers	86
10.2.2. Hearing aids	86
10.2.3. Other medical equipment	86
10.2.4. RF Marked equipment	86
10.3. EXPLOSIVE ENVIRONMENT	86
11. APPENDICES	86
11.1. SMS COMMANDS SYNTAX	86
11.2. MEMORY MAP	89
11.2.1. Analog inputs/binary inputs address space	90
11.2.2. Internal registers/binary outputs address space	
11.3. BIT LIST	94

1. Module's destination

The MT-723 is a specialized telemetry module optimized for use within simple measuring and alarm systems where power lines are not available and environmental conditions are harsh (dust, high humidity, possibility of water flooding).

Compact design, low power consumption, a wide range of acceptable energy sources (alkaline or lithium battery packs, gel or car batteries, solar panels and other), continuous pulse counting on binary inputs, local logging of measurement results and spontaneous information sending upon predefined events makes the module ideal choice for applications requiring periodical supervision of parameters and long time operation on battery supply.

The typical application areas are water-sewerage, especially water flow measuring using potential-free contact meter and monitoring of water level in wells and vessels.

For better acquaintance with the module and optimizing the power consumption we recommend reading configuration guide and application examples in appendices.

2. How to use the manual

The manual was written for beginners as well as for advanced telemetry users. Each user will find useful information about:

Module's design - this chapter presents the basic information about module's resources and design elements. Her is the information about how does the module work and how and where it may be employed

Module's connection diagrams - contains diagrams and procedures for connecting MT-723 with devices and external elements like sensors, antennas or the SIM card

First start of the module - contains recommended first start procedure

<u>Configuration</u> - this chapter presents information about all available configuration parameters. All parameters concern firmware version compliant with documentation version

<u>Maintenance and problem solving</u> - here is described procedure of unblocking locked SIM card and LED signaling schemes

<u>Technical parameters</u> - a revue of technical parameters and technical drawings

Safety information - information concerning conditions of secure use of the module

<u>Appendices</u> - contain a register of changes in consecutive firmware versions, syntax of SMS messages and the memory map of the module which is necessary for proper configuration of MTDataProvider and data collecting equipment.

3. GSM requirements

For proper operation of the module a SIM card provided by a GSM operator with GPRS and/or SMS option enabled is essential.

The SIM card has to be registered in the APN with static IP addressing. Assigned to SIM unique IP address will become a unique identifier of the module within the APN, enabling the communication with other units in the structure.

A paramount condition for operation is securing the adequate GSM signal level in the place where module's antenna is placed. Using the module in places where there is no adequate signal level may cause breaks in transmission and thereby data loss along with generating excessive transmission costs.

4. Module's design

4.1. Module's topography

4.2. Resources

Hardware Resources of MT-723:

DI binancianuta	5	binary inputs, pulse or potential free (the function is selected during configuration)					
DI - binary inputs	1	potential free binary input 16 with possibility of setting its state using magnet (reed switch)					
AI - analog inputs	2	0-5 V, with possibility of supplying power to the measuring circuit					
DO – binary outputs	3	NMOS outputs ("open drain" type) 0+30 VDC, mono- or bistable (the function is selected during configuration)					
Temperature sensor	1	temperature sensor integrated in the microprocessor					
Vibration sensor (binary input 15)	1	module has an integrated vibration sensor of contact, normally open, connected to digital input 15. It is used to detect movement of the device.					
GPS Module (optional)	1	for calculating geographical position and time synchronization					
Pressure sensor (optional)	1	MT-723/PT version of the module with an integrated pressure sensor					
Module flooding sensor (optional)	1	in developing stage					

4.2.1. Binary inputs

MT-723 module is equipped with 6 binary inputs (DI) marked as I1...I6.

Inputs **I1...I6** are designed to cooperate with potential free contacts (contacts connecting the input and common for all inputs ground). The inputs operate in **negative logic**, meaning the input is high when connected to ground and low if the circuit is open. This solution allows energy saving, a crucial ability for battery driven devices. The contacts are polarized with potential of 3V in low state. Binary inputs **are not isolated.**

Each binary input, independently of other inputs configuration may operate as:

- Binary input change of input's state after considering filtration coefficient results in change of bit assigned to it in memory (see the memory map). The bit's state change may be used to trigger data transmission, sms, analog signal measurement and other actions.
- Pulse input allows calculating the flow based on counted flow-meter pulses. Aberrations may be filtered by setting signal's max. frequency, assuming the signal fill is 50%, (global setting) and max. pulse duration (individual for each input). The flow may be defined in engineering units per minute or hour. Each flow has assigned 4 alarm bits that may be used for event triggering.

NOTICE! In this mode bits assigned to inputs (I1...I5) do not change their state and cannot be used to trigger events except for counting inputs for counters CNT1...CNT5.

Binary input **I5** is connected with an integrated vibration sensor with normally open contacts. Therefore **it is not recommended** to use input I5 as binary input for fast-changing digital input signal or pulse input. It is not possible to simultaneously use the functionality of the vibration sensor and digital input, or pulse input I5. Additional parameters associated with vibration detection are gathered in <u>Vibration sensor</u> (optional) parameters group.

Binary input **16** can operate **only as a binary input**. This input can be, in addition to short-circuiting its pin to GND pin, set in a high state by approximating the magnet to a point marked on the left side of the module.

Irrespectively to chosen mode of operation states of the binary inputs are monitored by the module in both **energy-consuming and sleep mode**.

4.2.2. Binary outputs

MT-723 module is equipped with 2 binary outputs (DO) marked as Q1 i Q2.

The outputs are designed to control loads powered by internal source (e.g. light signaling). The outputs are of "open drain" type controlled by NMOS transistors. In High state the output is shorted to the ground by active NMOS transistor. In case of inductive type load connected (a relay) the circuit limiting voltage peaks to max. +30V is necessary.

Each binary output may be controlled remotely (SMS, GPRS) or locally. This means that the state may be altered by any device's bit change (e.g. analog input alert) defined in output configuration.

The outputs may operate as mono- or bistable outputs. The operating mode as well as length of the pulse in monostable mode is individually defined for each output.

4.2.3. Analog inputs

MT-723 module is equipped with 3 voltage analog inputs (AI) marked AN1...AN3.

The inputs are designed to work with analog sensors generating signal in 0...5V range. In order to minimize energy consumption the A/C converters are powered for the period necessary to conduct secure measurement.

The analog inputs are not isolated but due to floating, battery powering it does not influence modules resistance to disturbances.

The module measures values on all inputs simultaneously. Measurements may be triggered by any device bit (e.g. clock or binary input).

The result integration time for analog inputs is app. 0,5 sec. and minimum measure interval is 1 sec.

4.2.4. Power output Vo (analog sensors supply)

MT-723 module is equipped with the keyed power output Vo, which is destined to power sensors connected to analog inputs.

This output allows user to power sensors with voltage ranging from **0** to **5VDC** with step **0.1V**. Voltage is specified by the user parameter configuration.

In order to lower power consumption of the device, output is switched on only for the time necessary for the measurement. The delay between switching the input on and the measurement (and therefore turning off of output Vo) is configurable.

4.2.5. Temperature sensor

Integrated in the modem temperature sensor measures the temperature inside the enclosure and - after configuration - sends alerts about too high respective too low temperature.

Employing the sensor allows detection of operating on the border of allowed operating temperature.

4.2.6. Vibration sensor

Binary input 15 is connected with an integrated vibration sensor with normally open contacts. This sensor can be used for detection of module movement. This allows user to detect intrusion into measurement system ,perform measurements of module's positions only when the device moves more.

Vibration sensor is always on.

4.2.7. Real Time Clock

MT-723 module is equipped with Real Time Clock (RTC). This clock is a source for time measurement for the module's timers and time stamping of measurements stored in the Logger. The data transmitted by GPRS and data recorded in the logger are stamped with UTC time without taking the time zone into consideration. The timer used by SMS services and Timers respects the time zone settings.

Real Time Clock may be synchronized with:

- network operator time (the service provided by some GSM operators),
- automatically with the **MTSpooler** (at every reporting to the server. Previous assignment of Spooler's IP),
- manually, using the **MTManager** (the clock synchronizing is described in the program documentation),
- automatically with GPS localization- available in modules with installed GPS receiver.

It is recommended to manually synchronize module's real time clock during the first configuration performed using the **MTManager** program.

NOTICE!!!

The clock setting has to be repeated if the module was in storage mode (details in <u>Power supply</u> chapter).

4.2.8. Timers

MT-723 module is equipped with 8 general purpose programmable synchronous timers. Their function is counting constant user defined time intervals in range of 1 min to 24 hours. The user may appoint month and week days when the timer is active.

In addition there are available 8 general purpose asynchronous timers which are capable of counting time in range from 1 to 240 seconds. These timers start counting when module is powered or reset and are not synchronized with RTC clock.

The timer may be used to trigger periodical events like measuring analog values, flow, data transmission, logger recordings and other functions.

4.2.9. Counters

MT-723 is equipped with 8 general purpose counters. Their duty is to count pulses understood as binary signal changes of any bit present in the memory map. Each counter has one incrementing and one decrementing input and assigned 32-bit register holding the difference of counted pulses.

Initial state of the counters may be defined by user activating MTManager2.0 menu item **Initial settings** (more info in **MTManager2.0** manual).

Counters may be used for e.g. flow meter's pulse counting, counting of enclosure openings, GPRS logins and many others.

4.2.10. Logger

MT-723 module has a programmable logger that may hold up to 10240 data records. This equals either 24 hours measurements taken every 10 seconds or 1 month measurements taken with 5 minutes intervals.

The logger logs asynchronous data, meaning that the record writing is triggered by an event (defined by user in the Event table). The event may be e.g.: analog value measuring completion, counting the time by the timer, login to GPRS, crossing one of defined alarm thresholds and other. The logger records all of the events defined in the table. The user has an opportunity to define which ones have to be transmitted. The records are the copy of all module's registers. Each record in the logger has a time stamp of the module's internal Real Time Clock (RTC).

The data written in the logger is transmitted to IP address assigned during configuration. Sending of the logger content is triggered by user defined events. Confirmation of reception marks records as sent. In case of overflowing the oldest records are overwritten.

4.2.11. GPS (optional)

MT-723 module may be equipped with a GPS receiver. This allows defining the exact geographical position of the module. This feature may be employed to identify units in a mass deployment or to define actual position of the mobile measuring point. It is possible to use a GPS receiver to report movements of the module.

4.3. USB

MT-723 provides USB socket used for local configuration by MTManager2.0 program.

When module is connected via USB to a computer, it is powered via USB port. Thanks to that the module does not consume limited battery power during configuration and tests. During USB connection **VBAT** register holding data of battery voltage is **frozen on the last recorded value** (at first configuration the value is 0).

For **USB** connection a standard AB type cable is used. See depicted plugs of the cable below.

The proper USB connection is signaled by the **POWER LED** (the module is powered by USB) and the **USB LED** (USB port ready for transmission). Data transmission is signaled by shot flashes of USB LED.

Detailed information on using the **USB** port for module configuration can be found in the **MTManager2.0** manual.

4.4. SIM card

MT-723 module is equipped with a holder for miniature SIM card. The holder is placed horizontally on the PCB inside the enclosure.

Proper insertion of the **SIM** card is essential for module's operation in GSM network. The module accepts only **SIM** cards in **3,3V** low voltage technology.

4.5. Power supply

MT-723 module can be powered from **any DC power source** providing voltage within the range of 7-30 VDC, including a DC power supply, alkaline batteries, gel batteries, photovoltaic cells, and others.

It is recommended to place the power supply in IP68 enclosure and ensure the connection with module is of the same class. Any power source housing or connectors leakage may allow water penetration and consequently damage electronic components of module. Proper power source connection is described in <u>Power supply</u> subchapter of <u>Connection diagrams chapter</u>.

When module is being configured via USB it is powered from a PC. This allows module to reduce battery consumption. Working with such supply is indicated by **PWR** and **USB** LEDs (details provided in *LED signaling* subchapter of *Maintenance and problem solving* chapter). Module connected to PC via USB is constantly in high energy consumption state (is awake and logged to GSM/GPRS network).

The module is equipped with an internal lithium **backup battery** that is designed to provide power to module after main power loss. This battery is **not replaceable nor rechargeable**.

The module can be in three power supplying modes:

- operational mode this is the default power supplying mode. In this mode
 modules is powered from external main power source or from USB cable.
 Module enters this state after connecting USB cable or connecting main power
 source. In this mode full functionality of module is available;
- backup power mode in this mode module is powered from backup battery. Module enters this state three minutes after main power source loss. In this mode module is measuring binary inputs, counting pulses, measuring flows. Analog measurements and GSM/GPRS communication are not possible in this mode. Module is constantly in sleep mode to preserve power it is signaled by PWR LED. It is advised to replace damaged/depleted power source as soon as possible;
- **storage mode** in this mode is not connected to any power source and does not consume power from the internal lithium backup battery. To set module in this mode hold magnet for 1 minute at the point marked on the bottom of the device. The transition to this mode is indicated by lack of LED signaling (within 12 seconds there should be no **PWR** or other LED blink);

4.6. LED indicators

LED indicators placed on MT-723 module's PCB are a great help during modules startup.

The LED's have assigned following significance:

- PWR LED indicates module's activity and mode
- ERR LED indicates an error
- STA LED indicates GSM status
- TX LED indicates GSM data transmission
- RX LED indicates GSM data reception
- USB LED indicates USB communication on USB port

Detailed description can be found in <u>LED signaling subchapter of Maintenance and problem solving chapter</u>.

4.7. GSM antenna

Connecting the antenna is necessary for reliable data transmission from MT-723 module. SMB IP68 type antenna socket is placed on module's panel.

Depending on local signal propagation and user's needs different antenna types may be used. Proper antenna placement is important during the module installation. In case of low GSM signal level using the directional antenna or antenna high gain may be necessary.

It is essential to use IP68 connector to prevent moisture penetration which can cause module damage.

4.8. Reed switch input

Between **DIGITAL1** and **DIGITAL2** sockets, in place marked on module housing there is spot which is used as reed switch test input. It is activated by putting a magnet on marked spot and then moving it away (negative logic).

Activation of this input causes setting **KEY_P** bit for one program cycle. This feature can be used to trigger events and/or measurements during telemetry system tests.

4.9. Enclosure

Enclosure of MT-723 module is manufactured from high quality plastic securing highest environmental protection (IP68) for the electronics even in harsh environment. Housing is manufactured by FIBOX. All <u>enclosure data</u> including the parameters of used material are available at manufacturer's web page <u>www.fibox.com.</u>

Please note that the degree of protection is highly dependent on used connectors. Connectors used in the construction ensure maintaining IP68 protection degree. **Using other connectors may result in water penetration and consequently cause device damage.**

5. Connection diagrams

This chapter presents recommended wiring configurations ensuring proper functioning of all MT-723 module's resources.

Connections are presented for:

- Binary inputs I1...I5
- Binary outputs Q1...Q2
- Analog inputs AN1...AN3
- Power supply

and installation methods of:

- SIM card
- GSM antenna
- GPS antenna

5.1. Binary inputs

Binary inputs of MT-723 operate with **negative logic**, meaning that high state occurs only when the input is connected to ground. In open circuit the potential in reference to GND pin is not higher than **2,5 VDC**. Inputs work only with potential-free contacts like relay outputs, keyed transistor outputs. Below you can find recommended input connection diagram and sockets pinout description necessary for preparing plugs.

Resource	Connector	Pin number*
l 1	Digital1 (4-pin)	1
12	Digital1 (4-pin)	2
13	Digital2 (6-pin)	1
14	Digital2 (6-pin)	2
15	Digital2 (6-pin)	3
16	Digital2 (6-pin)	4
GND	Digital1 (4-pin)	4
GND	Digital2 (6-pin)	6

^{*}pin in plug and pin in socket that create a contact have the same pin number

All binary inputs have same reference - module's electrical ground - negative pole of the power supply connected to **GND** pin.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps. Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.2. Binary outputs

Binary outputs are **transistor outputs** of **NMOS type** (QI). They are designed to control loads powered from **external**, **positive potential source**. In the high state the output is shorted to ground via NMOS transistor in ON state ("open drain" circuit).

In case of inductive type load connected (a relay) a circuit limiting voltage peaks to \max . +30V is necessary.

Below you can find recommended input connection diagram and sockets pinout description necessary for preparing plugs.

Resource	Connector	Pin number*
Q1	Digital1 (4-pin)	3
Q2	Digital2 (6-pin)	5
GND	Digital1 (4-pin)	4
GND	Digital2 (6-pin)	6

^{*}pin in plug and pin in socket that create a contact have the same pin number

All binary outputs have same reference - module's electrical ground - negative pole of the power supply connected to ${f GND}$ pin.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps. Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.3. Analog inputs

Analog inputs convert input voltage in 0-5V range. This means that the potential between analog input terminals shall not be higher than 5V. The potential of analog input terminals towards module's ground (applies for connection with the symmetrical sensor, four leaded) has to be within -0.5V to 9V for positive terminal and from -5.5V to 9V for negative terminal.

Power output Vo used to supply the sensors allows generating potential in 0-5V range with 0.1V accuracy. Max. drawn current should not exceed 50mA.

Diagrams illustrating recommended connections of sensors in various configurations.

Sockets pinout description necessary for preparing plugs is described below:

Resourse	Pin number*
AN1+	1
AN1-	2
AN2+	3
AN2-	4
AN3+	5
AN3-	6
Vo	7
AGND	8

^{*}pin in plug and pin in socket that create a contact have the same pin number

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.4. GSM antenna

Antenna can be connected to MT-723 module via SMB IP68 socket.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.5. GPS antenna

Antenna can be connected to $\mathbf{MT-723}$ module via SMB IP68 socket. This socket is available only in modules with integrated GPS receiver.

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.6. SIM card installation

Proper insertion of the **SIM** card is one of fundamental conditions of module's correct operation. Without it the data transmission and access to SMS services are impossible.

We recommend that inserting of **SIM** card is done with power disconnected, which means that both battery and USB cable are not connected.

We recommend inserting the SIM card after writing to module configuration including correct PIN code for that SIM card. Bear in mind that after three attempts of entering wrong PIN code the SIM card gets blocked. Inserting of wrong pin code is signaled by LED indicators. The blocked card may be unblocked. For details see procedure described in sub-chapter Unblocking the SIM card of Maintenance and problem solving chapter.

The SIM card should be inserted into SIM holder hidden behind large protective cap. SIM card contacts should face bottom of modules enclosure. The card should be pushed gently till slight resistance is felt. Properly installed SIM card should stick out slightly from the protective gel covering module's electronic parts.

Correctly installed **SIM** card secures connection between its contact fields and the holder contacts.

5.7. Power supply

MT-723 module can be powered from **any DC power source** providing voltage within the range of 7-30 VDC, including a DC power supply, alkaline batteries, gel batteries, photovoltaic cells, and others.

Resource	Pin number*	
VIN-	1	
VIN+	2	

^{*}pin in plug and pin in socket that create a contact have the same pin number

Connection between plug and socket should be secured with locking ring to ensure certainty of the connection. Unused slots should be secured with protective caps.

Assembly of IP68 plug is described in the instruction attached to the elements of the plug. It is recommended to use cables with a circular cross-section. Usage of cables with different cross-section does not warrant maintaining tightness of the system.

5.8. Installation

Telemetry module MT-723 must be secured to a stable substrate (e.g. to concrete wall), using two screws or bolts put through montage holes marked on the image below. Diameter of the holes is 5 mm and spacing between them is 160 mm.

Do not expose the enclosure to tension or mechanical vibrations, which may lead to the dehermetization and as consequence to module damage.

6. First start of the module

First start of the module MT-723 requires a few simple activities. We recommend supplying the power via USB in order to save the battery. Please follow these steps:

1. Connect signal wires and GSM antenna

Recommended connections diagrams for signal wires and the antenna are in <u>Module connections diagrams</u> chapter.

2. First configuration of the module

The scope of first configuration of **MT-723** is to enter parameters enabling login to GSM network and optionally GPRS network. A USB connection to the computer running **MTManager** program suite has to be established. Detailed information on how to install and use the **MTManager** program is on the MTManager installation CD (MT-CD).

In order to login to GSM/GPRS network the basic information about the SIM card and APN have to be provided to the module:

In **General** group:

PIN code for the SIM card

provide PIN code for SIM card that is going to be placed in the module (unless the card is set in pin-less mode).

Using GPRS

Yes - if using SMS and GPRS packet transmission is intended **No** - if the module is going to use SMS mode only.

In **GPRS** group - visible when *Using GPRS* parameter is set to *Yes*:

APN name
provide APN name for GPRS transmission.

APN user name
provide user name (if required by the operator)

APN password
provide the password (if required by the operator)

These parameters are the only parameters required to login to GSM/GPRS network. Bear in mind that the module with only the basic configuration does not have ability to send data. After checking the ability to login the full configuration of parameters has to be performed in order to use the module in intended extent.

3.Inserting the SIM card

After downloading the first configuration disconnect the USB connection, insert the SIM card according to the <u>previous chapter's instructions</u> and reconnect the USB cable. The module should login to the GSM/GPRS network. The status of the module may be verified by comparing LED indicators with the table provided in the <u>sub-chapter LED signaling of Maintenance and problem solving chapter</u>.

Login sequence:

- 1. Module start
- 2. Verification of SIM card's PIN code
- 3. Registration of modem in GSM network
- **4.** Login to selected APN in GPRS network

Verify the configuration if any errors are indicated.

4. Setting the module time

The last, but very important element of module's startup is synchronizing the Real Time Clock of the module with the computer clock. It is crucial since lack of synchronization may result with faulty time stamping of the data in Logger and may lead to data loss. More information about time synchronization is in MTManager user manual.

7. Configuration

7.1. General information

Configuration of MT-723 module is performed by MTManager (MTM) program delivered free of charge to all users of our telemetry solutions.

The program objective is creating a coherent program environment for management and configuration of MT/ML module series.

The program is a specialized environment enabling full control of the telemetry system regardless its size.

The opportunity of dividing all resources into Projects and Folders facilitates management of very large systems.

All parameters described below are available after adding a MT-723 module to MTM environment. Detailed description of functionality and use of MTM program is to be found in MTManager User Manual.

7.2. Parameter Groups

For the ease of use, **MT-723** parameters are divided into logically or functionally related groups.

<u>Header group</u> - contains unmodifiable parameters describing the module, firmware and configuration.

contains basic parameters defining module's operating mode

contains parameters for SMS services handling

- contains parameters necessary for log in GPRS network and defining vital parameters for reliable transmission

- contains lists of phone numbers and IP addresses of other terminals authorized to communicate with the module

- contains parameters for programmatic and hardware resources related to reading and processing measurement

resources related to reading and processing measurement data

- contains a list of defined events (e.g. binary input state change), used to trigger module's actions (e.g.: sending SMS, measurement data, logger data)

36

Events group

General group

SMS group

GPRS group

group

Authorized numbers

Resources group

GSM activity group

- contains parameters extending GSM/GPRS log in time after

reception of SMS or incoming data

Rules group - contains lists of transmission tasks to perform when defining

criteria are met

Beyond above mentioned configuration parameter groups there are <u>Initial settings</u>, enabling presetting of module's resources.

7.2.1. Header group

The header group contains basic information describing the module, along with configuration and version of configuration file stored by the program. Information displayed is for verification purposes only and thus not available for user configuration.

7.2.1.1. Module name

Performed - Presents the name assigned to the module during

function configuration

Data type - Text

Range - None, read only parameter

Comments - N/A

7.2.1.2. Module type

Performed - Displays the type of configured module

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A Comments - N/A

7.2.1.3. IMEI number

Performed - Displays GSM modem's IMEI number

function

Data type - Number

Range - N/A, read-only parameter

Comments - N/A

7.2.1.4. SIM card's number

Performed - Displays SIM card's serial number

function

Data type - Number

Range - N/A, read-only parameter

Comments - N/A

7.2.1.5. Module's serial number

Performed - Displays the serial number of configured module

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - This field displays a serial number assigned during

manufacturing process. This is a device's unique identifier.

7.2.1.6. Modem firmware version

Performed - Displays GSM modem's firmware version

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The field updates automatically after downloading the

firmware.

7.2.1.7. Module's firmware version

Performed - Displays the identifier of current firmware version

function

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The field updates automatically after downloading the

firmware

7.2.1.8. Configuration file version

Performed - Displays the version of configuration file used to configure

function the module

Data type - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The value depends on firmware version chosen during

creation of module definition. Additional literal extension enables creation of sub-versions within same general

functionality.

7.2.1.9. Configuration identifier

Performed function

- Displays the identifier of current device configuration

function

Data type - Hexadecimal

Range - N/A, read-only parameter

Default value - N/A

Comments - The value is increased automatically by 1 after each

successful configuration downloaded to the module

7.2.1.10. Last configuration date

Performed

Displays the date and time of last successful configuration

function change **Data type** - Text

Range - N/A, read-only parameter

Default value - N/A

Comments - The value of this field updates automatically after successful

configuration change.

This parameter helps tracing unauthorized configuration

changes.

7.2.1.11. Last read device time

Performed function

Displays internal clock time read upon change of time or

during last configuration reading.

Data type - Text

Range - Compliant with Time and Date format

Default value - N/A

Comments - This field's value may be used for verifying last access time

and setting real time clock (RTC) of the module

7.2.2. General

Group **General** consists of parameters vital for module's operation regardless of employed resources and functionality. Data inserted here is paramount for proper log-in to GSM and GPRS network. One has to be aware of the fact that values inserted here influence module's operation. Inserting invalid parameter values may render the module dysfunctional (e.g. inserting of invalid PIN code for the SIM card)

7.2.2.1. PIN code of the SIM card

Performed function

- Allows passing of the PIN code supplied along with the SIM

card inserted into the module.

For SIM cards not protected by the code the value is

insignificant.

Data type - Number

Range - Max 8 digits

Default value - N/A

Comments - Inserting of wrong value may cause blocking of the module.

NOTICE!!!

Pay attention when inserting the PIN code. Inserting of wrong code will not only render starting of the module impossible but may lock the SIM card! To prevent locking the card the module makes only 2 attempts of inserting the PIN code.

In case of module signaling locked SIM card apply <u>unblocking procedure</u> described in **Problem solving** chapter.

7.2.2.2. Configuration password

Performed - Allows protecting the configuration with a password. The password will be required in order to read and write

password will be required in order to read and write configuration both for local and remote operations. The password protects against unauthorized attempts of changing the configuration. The password does not protect

against reading of module's resources.

Data type - Alphanumeric

Range - Letters, digits and special characters; max 31 characters

Default value - N/A

Comments - Since the only way of unlocking the module without the

password is returning to factory settings it is strongly

recommended to store passwords at safe location.

7.2.2.3. Configuration read disable

Performed - Allows blocking of configuration reading even when valid password is supplied.

Data type - Selection list

Range - Yes

Configuration reading is impossible

No

The module is not protected against reading of

configuration

Default value - No

Comments - This parameter does not influence writing of full

configuration while it prevents writing changes if configuration identifiers are not identical in the module and

in MTManager program.

7.2.2.4. Time synchronization

Performed function

Selects the source and synchronizes module's real time

clock (RTC)

Data type

Selection list

Range

None

time synchronization off

Operator GSM

time synchronization with GSM operator's network. This option works only in networks supporting time

synchronization.

Default value

None

Comments

If the module is furbished with GPS module, the clock will be synchronized with GPS time each time the geographical position is set. This synchronization is independent of Time synchronization parameter settings.

7.2.2.5. Using GPRS

Performed function

The parameter selects module's operating mode.

Data type

Selection list

Range

Yes

The Module operates in GPRS mode and attempts to log in to appointed APN at power on. This mode

requires SIM card with GPRS enabled.

No

The Module operates in GSM mode. The only way of remote operation is sending SMS messages. This operating mode does not require GPRS thus

allowing use of a pre-paid SIM

Default value Yes Comments N/A

7.2.3. SMS

Group SMS contains parameters related to sending and receiving of text messages by MT-723 module.

7.2.3.1. Daily SMS limit

Performed function

Defines max number of SMS, the module may send during one day. The parameter protects against uncontrolled sending of SMS messages and consequent high running

expenses.

Data type Number

1...60 000 Range

Default value 100 Comments N/A

ATTENTION!

Reaching set by the parameter limit results with unconditional stop of SMS sending. One has to bear in mind that until 00:00 o'clock no messages will be sent even in alarm situations!

Unsent due to limitation SMS messages are queued (the queue holds 16 messages) and will be sent when it is possible (after 00:00). If the number of queued messages is higher than the limit set by user, there is a risk of immediate consuming of the next days limit.

7.2.3.2. Number of SMS sending retries

Performed

Defines max number of retries of failed SMS transmission

function Data type

Number

Range **Default value** 1...16

.3

Comments

After reaching the defined value the SMS is deleted from

sending queue.

7.2.3.3. SMS in roaming

Performed function

Data type

Decides whether the module may send SMS when roaming

in foreign network.

Selection list

Yes Range

All SMS messages are sent regardless of the GSM

roaming

No

When roaming in foreign GSM network no SMS are sent. Messages are queued and will be sent upon

return to home network.

Default value

Comments

In order to be able to sent SMS in roaming the SIM card in the module has to have roaming option active. When roaming option of the SIM is not active, the messages will be lost after reaching the <u>Number of SMS sending retries</u>.

7.2.3.4. SMS limit alert

Performed function

Contains the text of the SMS message sent upon reaching

Daily SMS limit.

Text Data type

Letters, numerals and special characters; Range max 255

characters

Default value SMS limit was exceeded!

Comments This information is sent beyond standard messages queue

and only **once a day**. This message does not increment

sent messages counter.

7.2.3.5. SMS limit alert recipient

Performed - Selects the SMS limit alert recipient

function

Data type - Selection list

Range - Authorized numbers list and *None*

Default value - None

Comments - The recipient must be previously defined in <u>Authorized</u>

<u>numbers -> Phone</u>. Selecting *None* disables sending daily

SMS limit alert.

7.2.3.6. Response to empty SMS

Performed - defines the text of reply for empty SMS to the sender.

function

Data type - Text

Range - Letters, numerals and special characters; max. 255

characters

Default value - Hello! MT-723 here

Comments - In replay message text symbolic names may be used

following syntax rules defined in Appendices in the $\underline{\text{Syntax of}}$

read and write commands in SMS chapter.

7.2.4. GPRS

GPRS Group contains parameters related to log-in and data transmission functions in GPRS system. They can be divided into mandatory (e.g. <u>APN name</u>), optional (e.g. <u>Spooler IP</u>) and optimizing transmission (e.g. <u>Transmission timeout [s]</u>).

7.2.4.1. APN name

Performed - Defines the name of APN in which GPRS transmission will be

function carried out

Data type - Text

Range - Letters, numerals, special characters - max. 63 characters

Default value - Empty

Comments - Not defined APN name renders login to GPRS impossible.

7.2.4.2. APN user name

Performed - Defines user name for APN access

function

Data type - Text

Range - Letters, numerals, special characters - max. 31 characters

Default value - Empty

Comments - This parameter is optional, supplied only if GSM operator

requires it.

7.2.4.3. APN password

Performed function

Defines a password for the particular APN user

Data type

Text

Range

Letters, numerals, special characters - max. 31 characters

Default value

Comments

This parameter is optional, supplied only if GSM operator

requires it.

7.2.4.4. Device identifier

Performed function

Selects device identifier type to be set in data frame header

sent from the module.

Data type Selection list IP address Range

> The header of data frame contains IP address of sending device. The device is recognized by the data collecting service (MTDataProvider) on the base of

its IP address.

Serial Number

The header of data frame contains a serial number of sending device. The device is recognized by the data collecting service (MTDataProvider) on the base of its serial number. The advantage of this solution is the possibility of changing module's IP address (exchange of SIM card or dynamically assigned address) without changing MTDataProvider's configuration or giving up a part

of its abilities (writing into data base)

Default value IP address

Comments When operating in dynamic IP assignment mode the

identification goes by serial number and allows only

reception of data from the module.

7.2.4.5. Sender IP address control

Performed function

Switches the control of sender's IP address on/off

Data type Selection list

Range Yes

The module exchanges information only with IP addresses present on the Authorized IP addresses

list.

No

The module exchanges information (configuration, responses for queries) with any IP address sending qualified query or command. In this case the identification of the sender goes by its current identifier.

Default value

Comments Switching the control off enables verification of the sender

on the base of its currently assigned identifier other than IP address (e.g. serial number or (virtual IP for MT-1xx series)). This allows communication among units with dynamically assigned IP addresses (within same APN). Sender's identifier must reside on Authorized IP addresses

list in order to establish the communication.

7.2.4.6. Module IP

Performed Inserts IP address for newly created module definition. The function address assigned upon last GPRS login and read in along

with the configuration is displayed

IP address Data type

0.0.0.0 - 255.255.255.255 Range

Yes

Default value 0.0.0.0

Comments When this field is left at default value 0.0.0.0 the remote

communication with the module will be impossible.

7.2.4.7. Parameter - Force IP (0.0.0.0 – DHCP)

Performed

function

Allows to force user given IP address within APN

Data type IP address

Range 0.0.0.0 - 255.255.255.255

Default value 0.0.0.0

Comments Comments - If value is 0.0.0.0 then IP is given by DHCP. If

this functionality is not supported by APN then IP is given by

DHCP.

7.2.4.8. Spooler IP

Performed function

Defines IP address of the computer running MTSpooler, the program performing delayed remote configuration of

battery powered modules.

Selection list Data type Range Authorized IP list

Default value None

Comments If MTSpooler is not employed, the parameter should have

value *None*. This will avoid obsolete reporting to the spooler

and pointless retries due to missing replies.

7.2.4.9. GPRS transmission retries number

Performed function

Defines number of attempts to send data through GPRS network if the reply to original transmission does not arrive in a timely manner specified by Transmission timeout

parameter

Data type Number Range 0...9 **Default value**

Comments Setting the value to *O* results in sending data without waiting

for reception confirmation.

In normal conditions the value should not exceed 3. This prevents loss of transmitted data without blocking of subsequent rules processing. Bear in mind that subsequent data will be sent after reception of confirmation for reception of previous frame. Every transmission prolongs high energy

consumption state and influences battery life time.

7.2.4.10. Transmission timeout

Performed function

Defines the wait time for reception confirmation of sent data

frame . (in seconds)

Data type Number Range 1...60 Default value

Comments The value of this parameter along with number of

transmission retries influences max. time of sending a data frame. For default values the time is (3 + 1) * 6 = 24s. One has to bear in mind that long waiting time consumes the

energy and shortens battery life time.

7.2.4.11. GPRS testing address (ping)

Performed function

Defines IP address for GPRS transmission test frames.

IP address Data type

0.0.0.0 - 255.255.255.255 Range

Default value 0.0.0.0

Comments This parameter defines IP address to send data frames

> testing GPRS transmission channel. Default value 0.0.0.0 deactivates testing process. Any inserted IP address is assumed to be valid. We recommend putting here central

node's (data collector) IP address.

7.2.4.12. GPRS testing time

Performed function

Defines the interval of testing GPRS connection (in minutes)

Data type Number 0 ... 250 Range

Default value 4

Testing is performed by sending data frames to defined by Comments

> the parameter GPRS testing address. Test frames are sent when the module is logged in APN and no communication is

performed during the defined by this parameter period. If the test fails, that is the module does not receive confirmation during the time defined by the Transmission timeout parameter and after defined number of retries - the connection to the APN is reset.

7.2.4.13. GPRS roaming

Performed function

- Defines whether the module is to use GPRS transmission when roaming in foreign GSM network.

Data type - Selection list

Range - Yes

In absence of home network availability the module will try to log in to available foreign GPRS network.

No

Using of GPRS networks other than home network

disabled.

Default value - No

Comments - In order to log-in to other networks the SIM card present in

the module must have roaming option enabled.

ATTENTION!

Using GPRS roaming may cause considerable expenses! It is strongly recommended to investigate the cost of GPRS transmission of countries one plans to use roaming services in!

7.2.5. Authorized numbers

Group **Authorized numbers** comprises lists of phone numbers and IP addresses the module is going to communicate with. The List of IP addresses serves to granting access to configuration and data reception privileges.

7.2.5.1. Number of phone numbers

Performed function

Defines the length of phone numbers list authorized to exchange SMS messages.

Data type - Number
Range - 0...32
Default value - 0

Comments - The value of this parameter may vary as the result of adding/deleting when using the context menu operating

adding/deleting when using the context menu operating directly on Phone number. The module will communicate only with units with the phone number present on the list. The only exception is a special SMS activating the module. Read more in Syntax for reading and writing commands

using SMS chapter of Appendices.

7.2.5.2. Number of IP addresses.

Performed function

Defines the length of the IP addresses list

Data type - Number
Range - 0...32
Default value - 0

Comments - The value of this parameter may vary as the result of

adding/deleting when using the context menu operating directly IP addresses list. The module will communicate only

with units with the IP address present on the list.

7.2.5.3. Phone

Ip. - Index number

Name - Friendly name facilitating identification of the module while

defining Rules. Max. length 16 characters

Number - Phone number assigned to list index. Max. 14 characters

Receiving - The module receives and analyzes SMS messages

depending on selected setting. When Receiving is not allowed, all SMS messages will be deleted

Default value: ★ (not allowed)

Configuration - Depending on configuration settings incoming configuration

SMS will be processed or ignored. **Default value:** * (not allowed)

Entries on phone list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in parameters window.

7.2.5.4. IP

Ip. - Index number

Name - Friendly name facilitating identification of the module's IP

while defining Rules. Max. length 16 characters.

Number - IP address assigned to list index.

Receiving - Value of this parameter determines whether data arriving

from selected IP will be accepted or ignored

Default value: ✓ (Allowed)

Configuration - Value of this parameter determines whether remote

configuration data arriving from selected IP will be ignored or accepted. Notice that both sender's and receiver's

addresses must reside in the same network (APN).

Default value: ✓ (Allowed)

Entries on the list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in parameters window.

7.2.6. Resources

Resources group contains user defined hardware configuration and hardware programs parameters. Particular sub-groups contain fields allowing fast and intuitive preparation of the module to perform measurements and evaluations of external parameters (binary states, pulse counters, temperature and air humidity) as well as internal (timers, flags).

7.2.6.1. Internal resources Modbus ID

Performed - Defines Modbus ID of module's Internal resources in Modbus

function Slave operating mode

Data type - Number Range - 0 ... 255

Default value - 1

Comments - Value of ID Modbus O (zero) renders remote reading of

internal resources impossible.

7.2.6.2. Terminals

Sub-group **Terminals** comprises all hardware resources of the module that can be described as inputs or outputs.

Every resource has a group of parameters assigned. Proper configuration of parameters influences the quality of measurements and module's battery life time.

7.2.6.2.1. Binary (I1...I6)/pulse inputs (I1...I5)

Binary inputs of the module operate in two modes:

- binary input the input operates as negative logic input (logical true equals GND potential). Mode available for inputs I1...I6.
- pulse input configuration dedicated to counting pulses of external counters and calculating the flow. Mode available for inputs I1...I5.

7.2.6.2.1.1. Maximum pulse frequency

Performed - Defines maximum frequency of counted pulses function

Data type - Selection list

Range - 8Hz, 16Hz, 32Hz, 64Hz, 128Hz, 256Hz

Default value - 8Hz

Comments - For energy savings select lowest frequency required by

application.

7.2.6.2.1.2. Bit triggering flow calculation

Performed - Selects any bit from module's address space. Change of bit's

function state to high initiates flow calculation process.

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value - N/A

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.2.1.3. Name

Performed - Defines input's user friendly name

function

Data type - Text

Range - Letters and numerals, max. 31 characters

Default value - Respective *I1, I2, I3, I4, I5, I6*

Comments - Assigning friendly names facilitates discrimination of inputs

destination and required settings.

7.2.6.2.1.4. Operating mode

Performed - Defines binary input's operating mode.

function

Data type - Selection list

Range - Inactive

Input switched off

Binary input

Operates as binary input

Pulse input

Operates as pulse input (option unavailable for

input 16)

Default value - Inactive

Comments - According to selected mode MTManager displays additional

configuration parameters for each input

7.2.6.2.1.5. Filtering constant

Performed function

Defines (in seconds) minimum duration of electrical state on the input to be considered stable, thereby indirectly defining

maximum time duration of electrical noise

Data type - Number - 0,1 ... 60,0

Default value - 0,1

Comments - Increasing the value increases noise immunity but delays

change detection reaction.

This parameter is available in binary input mode only.

7.2.6.2.1.6. Dynamic pull-up

Performed function

Defines dynamic pull-up function

Data type - Selection list

Range - Yes

Dynamic pull-up on

No

Dynamic pull-up off

Default value - Yes

Comments - Activating of dynamic pull-up reduces binary inputs energy

consumption - the current is sent through internal resistors

to the input only during input state sampling time.

When dynamic pull-up is off the current is flowing constantly thus increasing power consumption, especially for inputs

working in high state mainly.

We recommend to keep dynamic pull-up on, except

situations where:

• connected circuit has the capacity higher than

1 nF

• direct current contact clean up is required

7.2.6.2.1.7. Minimum pulse length

Performed function

Defines approximated minimal pulse length

Data type - Selection list Range - 2ms ... 12,8s

Default value - 64ms

Comments - This parameter filters high frequency signal noise. Available

values of the parameter depend on previously defined $\underline{\text{Max}}$

pulse frequency.

NOTICE! Do not select higher value than actual pulse duration, because it will make the module reject received

pulses as too short (noise).

This parameter is available in pulse input mode only.

Parameter unavailable for input 16.

7.2.6.2.1.8. Slope

Performed - Defines which slope of incrementing bit activates the

function counter incrementing function

Data type - Selection list
Range - Pulse start

pulse start is considered a new pulse

Pulse end

pulse end is considered a new pulse

Default value - Pulse start

Comments - This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.9. Flow unit

Performed - Defines the flow unit

function

Data type - Text

Range - Letters and numerals, max. 15 characters

Default value - mV

Comments - The unit name has solely informative value with no influence

on measured and transmitted information.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.10. Flow scaling

Performed - Selects time reference units for flow scaling.

function

Data type - Selection list

Range - None

Minute (eng. units/min)

Defines value increase per minute

Hour (eng. units/h)

Defines value increase per hour

Default value - None

Comments - This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.11. Pulse weight - engineering units

Performed - Defines pulse weight

function

Data type - Number Range - 1 ... 1000

Default value - 1

Comments - The value of the parameter is multiplied by counted pulses

in order to calculate flow rate.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.12. Alarm HiHi - engineering units

Performed function

- Defines **HiHi** alarm level for flow value in engineering units

 Data type
 - Number

 Range
 - 0 ... 32767

 Default value
 - 32767

Comments - Upon exceeding the preset value by calculated flow volume

the HiHi alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.13. Alarm Hi - engineering units

Performed function

Defines **Hi** alarm level for flow value in engineering units

 Data type
 - Number

 Range
 - 0 ... 32767

 Default value
 - 32767

Comments - Upon exceeding the preset value by calculated flow volume

the Hi alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.14. Alarm Lo - engineering units

Performed function

Defines **Lo** alarm level for flow value in engineering units

 Data type
 Number

 Range
 0 ... 32767

Default value - 0

Comments - Upon exceeding the preset value by calculated flow volume

the Lo alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.15. Alarm LoLo - engineering units

Performed function

Data type

Range

Defines **LoLo** alarm level for flow value in engineering

units
- Number
- 0 ... 32767

Default value - (

Comments - Upon exceeding the preset value by calculated flow volume

the LoLo alarm flag is risen. The resetting level of the flag

depends on Alarm hysteresis setting.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.16. Alarm hysteresis - engineering units

Performed function

Defines the hysteresis value for flow alarm threshold. The

value is set in engineering units.

Data type - Number
Range - 0...32767
Default value - 100

Comments - Setting hysteresis relevant for signal fluctuations prevents

excessive activations of alarm flags.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.1.17. Deadband - engineering units

Performed function

This parameter defines a minimal change of calculated flow value to react on. Exceeding this value sets a flag (FL1_DB to FL5_DB) respective to the pulse input where the change has been detected high. The flag is reset after one

program cycle to low state (0).

Data type - Number
Range - 0...32767
Default value - 100

Comments - When set to value *O*, the flag will rise upon every detected

flow change by minimum 1 engineering unit. Deadband flags are dedicated to continuous monitoring of flow

changes.

This parameter is available only in pulse input mode.

Parameter unavailable for input 16.

7.2.6.2.2. Binary outputs (Q1...Q2)

The module has two latching binary outputs that may operate as mono or bi-stable. In the high state output connects to GND.

7.2.6.2.2.1. Name

Performed function

Defines output's user friendly name

Data type - Text

Range - Letters and numerals, max. 31 characters

Default value - Respectively *Q1* and *Q2*

Comments - Assigning friendly names facilitates discrimination of

outputs destination and required settings.

7.2.6.2.2.2. Controlling bit

Performed function

- Selects any bit from module's address space. Change of bit's

state to high triggers the output high.

Data type - Selection list or Number

Name from the bit list (see bit list in Appendices) or 0 Range

...65535

Respectively *Q1* (address *10000*), *Q2* (address *10001*) **Default value**

Bit addresses 0...9999 point to input space while addresses Comments

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.2.2.3. Pulse length

Performed Defines the length of pulse generated on binary output in

function seconds. Number Data type

Range 0,0...1800,0 with 0,1 step

Default value

Comments Setting the value to Ochanges operating mode of the output

from monostable to bistable (the output state is a true copy

of the controlling bit's state).

7.2.6.2.3. Analog inputs (AN1...AN3)

MT-723 module is equipped with three analog inputs operating in 0 ... 5V standard and one controlled analog output Vo designed to power connected sensors.

7.2.6.2.3.1. Sensor powering voltage Vo

Performed Defines the value of voltage generated at power output Vo function dedicated to power analog sensors connected to the

module.

Data type Number Range 0,0 ... 5,0

Default value 0.0

Voltage adjusting step is 0,1 V. Max. current may not Comments

exceed 50 mA.

7.2.6.2.3.2. Measurement delay after activating Vo

Performed Defines delay between delivering voltage to sensors and function

registering the readings.

Number Data type 0 ... 60 Range **Default value**

Delay time is defined with 1 second accuracy. When set to 0, Comments

readings are performed with 62,5 ms delay.

7.2.6.2.3.3. Triggering bit

Performed - Selects any bit from module's address space. Change of bit's

function state to high initiates analog inputs reading.

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ...65535

Default value - N/A

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.2.3.4. Name

Performed - Defines input's user friendly name

function

Data type - Text

Range - Letters and numerals, max. 31 characters

Default value - Respectively AN1, AN2, AN3

Comments - Assigning friendly names facilitates discrimination of inputs

destination and required settings.

7.2.6.2.3.5. Engineering units

Performed - Defines engineering units for measured values

function

Data type - Text

Range - Letters and numerals, max. 15 characters

Default value - mV

Comments - Applied unit name has purely informative value and has no

influence neither upon measured nor transmitted values.

7.2.6.2.3.6. Low reference

Performed - Sets internal units low reference for rescaling of input signal

function to engineering units.

Data type - Number Range - 0 ... 5000

Default value - 0

Comments - Low reference for internal units

7.2.6.2.3.7. Low reference - engineering units

Performed - Sets engineering units low reference for rescaling of input

function signal to engineering units.

Data type - Number

Range - -32767... 32767

Default value - 0

Comments - Low reference for Engineering units

7.2.6.2.3.8. High reference

Performed - Sets internal units high reference for rescaling of input

function signal to engineering units.

 Data type
 - Number

 Range
 - 0 ... 5000

 Default value
 - 5000

Comments - High reference for internal units

7.2.6.2.3.9. High reference - engineering units

Performed - Sets engineering units high reference for rescaling of input

function signal to engineering units.

Data type - Number

Range - -32767 ... 32767

Default value - 5000

Comments - High reference for Engineering units

7.2.6.2.3.10. Alarm HiHi - engineering units

Performed - Defines HiHi alarm level for analog signal value in

function engineering units.

Data type - Number

Range - -32767 ... 32767

Default value - 32767

Comments - Upon exceeding the preset value by analog signal the HiHi

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.11. Alarm Hi - engineering units

Performed - Defines Hi alarm level for analog signal value in engineering

function units. **Data type** - Number

Range - -32767 ... 32767

Default value - 32767

Comments - Upon exceeding the preset value by analog signal the Hi

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.12. Alarm Lo - engineering units

Performed Defines Lo alarm level for analog signal value in engineering

function units. Number Data type

Range -32767 ... 32767

Default value -32767

Comments Upon exceeding the preset value by analog signal the Lo

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.13. Alarm LoLo - engineering units

Performed Defines LoLo alarm level for analog signal value in

function engineering units.

-32767 ... 32767 Range

Default value -32767

Data type

Upon exceeding the preset value by analog signal the LoLo Comments

alarm flag is risen. The resetting level of the flag depends on

Alarm hysteresis setting.

7.2.6.2.3.14. Alarm hysteresis - engineering units

Performed Defines hysteresis value for analog signal thresholds. The

value is set in engineering units. function

Number

Data type Number 0...65535 Range

Default value 100

Setting hysteresis relevant for signal fluctuations prevents Comments

excessive activations of alarm flags.

7.2.6.2.3.15. Deadband - engineering units

Performed This parameter defines a minimal change of registered function

analog signal to react on. Exceeding this value sets a flag (AN1_DB, AN2_DB and AN3_DB) respective analog input where the change has been detected high. The

flag is reset after one program cycle to low state (0).

Data type Number 0...65535 Range

Default value 100

Comments When set to value O, the flag will rise upon every detected

signal change by minimum 1 engineering unit. Deadband flags are dedicated to continuous monitoring of analog

signal changes.

7.2.6.3. Counters (CNT1...CNT)

Module's Counters may be used to count any pulses (interpreted as bit or binary input state changes). Counters are equipped with two inputs each. One incrementing and one decrementing the counter's register value.

7.2.6.3.1. Incrementing input

Performed - Defines the bit which state change increments counter value

function by 1

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value - None

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.3.2. Incrementing input's active slope

Performed - Defines incrementing bit's slope activating counter

function incrementing function

Data type - Selection list

Range - 0->1

logical state change from 0 to 1

1->0

logical state change from 1 to 0

Default value - O->1Comments - N/A

ATTENTION!

If bits set for one program cycle are counted (e.g. clock flags) or pulses on binary input set as pulse counter, the right parameter setting is 0->1. With any other selected value measurements will not be performed.

7.2.6.3.3. Decrementing input

Performed - Defines the bit which state change decrements counter

function value by 1

Data type - Selection list or Number

Range - Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value - None

Comments - Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.3.4. Active edge of decrementing input

Performed - Defines decrementing bit's slope activating counter

function decrementing function

Data type - Selection list

Range - 0->1

logical state change from 0 to 1

1->0

logical state change from 1 to 0

Default value - O->1Comments - N/A

ATTENTION!

If bits set for one program cycle are counted (e.g. clock flags) or pulses on binary input set as pulse counter, the right parameter setting is 0->1. With any other selected value measurements will not be performed.

7.2.6.4. Timers

Group **Timers** contains configuration parameters of module's timers.

7.2.6.4.1. Synchronous timers (CT1...CT8)

Synchronous timers measure cyclically defined time intervals. They are synchronized with module's real time clock (RTC).

7.2.6.4.1.1. Start

Performed - Defines the synchronization point with RTC

function

Data type - Time

Range - 00:00 - 23:59

Default value - 00:00

Comments - At time defined by this parameter the module will always

generate a pulse. One can make it generate pulse every hour, 15 minutes after the hour elapses (in that case the

parameter **Start** should have value 00:15)

7.2.6.4.1.2. Interval

Performed

Defines the interval module's clock should measure.

function

Data type - Selection list

Range

Never, 1 min., 2 min., 3 min., 5 min., 10 min., 15 min., 30 min., 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12

hours, 24 hours

Default value - Never

Comments - Selecting *Never* deactivates the timer

7.2.6.4.1.3. Days of week

Performed function

Defines days of week when the timer is active

Data type - Multiple choice field

Range - Mo., Tu., We., Th., Fr., Sa., Su.

Default value - *Mo.,Tu.,We.,Th.,Fr.,Sa.,Su.* (all week days selected)

Comments - The timer's activity is depending on logical sum of <u>days of</u>

week and days of month. Selecting all week days will make the timer active all of the time. If no days of week are selected the activity of the timer will depend only on days of

month selection.

7.2.6.4.1.4. Days of month

Performed function

Selects days of month when the timer is active.

Data type

Multiple choice field1, 2, ... 30, 31, Last

Default value

- No day selected (none of month days is selected)

Comments

Range

The timer's activity is depending on logical sum of <u>days of week</u> and <u>days of month</u>. Selecting all month days will make the timer active all of the time. If no days of month are selected the activity of the timer will depend only on <u>days of</u>

week selection.

7.2.6.4.2. Asynchronous timers (CK1...CK8)

Asynchronous timers measure cyclically defined time intervals. They are not synchronized with module's real time clock (RTC).

7.2.6.4.2.1. Period [s] (0 – inactive)

Performed function

Defines the interval module's clock should measure.

Data type - Number Range - 0 ... 240

Default value - 0

Comments - Selecting *O* deactivates the timer

7.2.6.5. Temperature sensor

MT-723 module is equipped with an integrated temperature sensor, or with optional precise temperature and humidity sensor.

7.2.6.5.1. Alarm Hi

Performed - Defines the high temperature threshold value. When

function exceeded the module rises a **TEMP_Hi** flag.

 Data type
 - Number

 Range
 - -20 ... 50

Default value - 50

Comments - Resetting of the TEMP_Hi flag occurs when the

temperature drops more than half degree below the

threshold value.

7.2.6.5.2. Alarm Lo

Performed - Defines the low temperature threshold value. When

function crossed, the module rises a **TEMP_Lo** flag.

Data type - Number
Range - -20 ... 50

Default value - -20

Comments - Resetting of the TEMP_Lo flag occurs when the

temperature rises more than half degree above the

threshold value.

7.2.6.6. Vibration sensor (I5 input)

Binary input **I5** is connected to an internal vibration sensor with contact normally open. This sensor can detect even slight movement of the device. This allows user to detect intrusion into the measurement installation, perform measurements of position only when the unit moves and much more.

Vibration sensor is always on.

Information about the detected vibration is signaled by the activation of **VIB** bit.

To use this feature binary input I5 <u>Operating mode</u> parameter should be set to any setting but *Inactive*. Full functionality of the binary input is maintained while the state of binary input I5 is analyzed on the presence of vibration. This analysis is done without taking into account limitations imposed by parameters: <u>Minimum pulse length</u> and <u>Filtering constant</u>. Effect on analysis however has setting of <u>Maximum pulse frequency</u> parameter.

7.2.6.6.1. Activity delay [s]

Performed - Defines minimum time of vibrations causing setting VIB bit

function high. **VIB** is bit informing about vibrations.

Data type - Number Range - 0 ... 60

Default value

Comments Setting this parameter to *O* causes setting **VIB** high on

every single pulse on 15 binary input.

This parameter is available only when Operating mode of 15

binary input is set to any setting but *Inactive*.

7.2.6.6.2. Activity time [min]

Performed Defines minimum time (in minutes) of lack vibrations function

causing zeroing of VIB bit. VIB is bit informing about

vibrations.

Number Data type Range 0 ... 30

Default value

Comments This parameter is available only when Operating mode of 15

binary input is set to any setting but *Inactive*.

7.2.6.7. Power supply

Groups parameters defining method of monitoring power supply.

7.2.6.7.1. Low voltage alarm

Performed Defines alarm threshold level of power supply voltage. function

When the voltage drops to the threshold value, a LBAT_C flag is raised. The alarm is generated for the voltage lower than threshold value. The alarm flag is raised for one

program cycle.

Data type Number 2,0 ... 99,0 Range

Default value 10.5

The LBAT_C alarm flag is recommended to dispatch the Comments

information about necessity of battery replacement.

7.2.6.7.2. Alarm notifying period

Performed Defines the interval for generating low power supply voltage

function alarm

Selection list Data type

Range 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12

hours, 24 hours

Default value 24 hours

Comments When the power supply voltage is lower than the one

defined by Low voltage alarm parameter the module will rise alarm flag with frequency defined by this parameter. When the voltage returns to value above threshold (battery

replaced) the module will stop generating alarms.

7.2.6.8. GPS

Contains parameters controlling optional GPS receiver

7.2.6.8.1. SFL selection bit

Performed function

 Defines bit used for choosing one from two position measurement triggering sources

Data type

- Selection list or Number

Range

Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

- None

Comments

If parameter is set to *None* here is only one <u>Bit triggering</u> <u>position measurement</u>. In any other case there are two such parameters: <u>Bit triggering position measurement</u>, <u>when</u> <u>SEL=0</u> and <u>Bit triggering position measurement</u>, <u>when</u> <u>SFL=1</u>

As a SEL bit you can set e.g. <u>vibration sensor</u> bit (**VIB**), to measure position more often when device is moving. Bit addresses 0...9999 point to input space while addresses 10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.2. Bit triggering position measurement

Performed function

Defines bit triggering position measurement

Data type

Selection list or Number

Range

- Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

None

Comments

- Parameter is visible only when parameter <u>SEL selection bit</u> is

set to *None*.

Bit addresses 0...9999 point to input space while addresses 10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.3. Bit triggering position measurement, when SEL=0

Performed function

Defines bit triggering position measurement, when SEL bit is zeroed.

Data type

- Selection list or Number

Range

Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

- None

Comments

- Parameter is visible only when parameter <u>SEL selection bit</u> is

set to any value but None.

Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.4. Bit triggering position measurement, when SEL=1

Performed function

- Defines bit triggering position measurement, when SEL bit is

in high state.

Data type

- Selection list or Number

Range

Name from bit list (see bit list in Appendices) or 0 ... 65535

Default value

- None

Comments

Parameter is visible only when parameter <u>SEL selection bit</u> is

set to any value but *None*.

Bit addresses 0...9999 point to input space while addresses

10000...65535 point to internal registers space.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.6.8.5. Accuracy of position measurement (HDOP)

Performed function

- Defines border value of HDOP parameter

function

Data type - Number
Range - 1 ... 99
Default value - 25

Comments

- GPS receiver will stop position measurement when it will reach set HDOP value or after 4 minutes from beginning of

GPS measurement.

After completion of position measurement **GPS_C** bit is set. If module was able to measure position, it sets **FIX** bit, and

writes new GPS data to registers.

2.6.8.6. Movement signalling

Performed function

Enables/disables movement detection mechanism

Data type - Selection list

Range - Yes

Signaling enabled

No

Signaling disabled

Default value - No

Comments - Setting this parameter to *Yes* makes available additional

parameter - <u>Movement signaling threshold [km]</u> used for determining minimum distance causing movement signaling. Signaling is done by setting **MOV** bit high for one cycle after detecting movement for distance greater than given by <u>Movement signaling threshold [km]</u>

parameter.

7.2.6.8.7. Movement signaling threshold [km]

Performed function

Defines minimum movement distance (in km) causing

movement signaling

 Data type
 - Number

 Range
 - 0,1 ... 65,0

Default value - 1,0

Comments - Signaling is done by setting **MOV** bit high for one cycle after

detecting movement for distance greater than given by

<u>Movement signaling threshold [km]</u> parameter.

Parameter is available only if <u>Movement signaling</u>

parameter is set to *Yes*.

7.2.6.8.8. Geofencing

Performed function

Enables/disables geofencing mechanism

Data type - Selection list

Range - Yes

Geofencing enabled

No

Geofencing disabled

Default value - No

Comments - Setting this parameter to *Yes* makes available additional

parameters: <u>Base position - latitude</u> and <u>Base position - longitude</u> allowing user to set coordinates of geofencing circle centre and <u>Radius [km]</u> parameter defining

geofencing circle radius.

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

7.2.6.8.9. Base position - latitude

Performed function

Allows user to set latitude of geofencing circle centre

Data type

Range - -90,00000° (90,00000° N) ... 90,00000° (90,00000° S)

Default value - 0,00000° (0,00000° N)

Number

Comments - Along with <u>Base position - longitude</u> and <u>Radius [km]</u>

parameters allows user to define geofencing circle.

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

Parameter is available if **Geofencing** parameter is set to **Yes**.

7.2.6.8.10. Base position - longitude

Performed

Allows user to set longitude of geofencing circle centre

function

Number

Data type - Range -

- -90,00000° (90,00000° W) ... 90,00000° (90,00000° E)

Default value

0,00000° (0,00000° E)

Comments

Along with <u>Base position - latitude</u> and <u>Radius [km]</u> parameters allows user to define geofencing circle. If measured position of module is located outside

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

Parameter is available if **Geofencing** parameter is set to **Yes**.

7.2.6.8.11. Radius [km]

Performed function

Allows user to set radius (in km) of geofencing circle centre

 Data type
 - Number

 Range
 - 0,1 ... 65,0

Default value - 1,0

Comments - Ale

Along with <u>Base position - latitude</u> and <u>Base position - longitude</u> parameters allows user to define geofencing

irolo

circle.

If measured position of module is located outside geofencing circle, module sets **GEOFC** bit high and **GEOF_C** bit high for one cycle. **GEOFC** bit is zeroed when measured

position is within geofencing circle.

Parameter is available if Geofencing parameter is set to *Yes*.

7.2.6.9. Logger

Contains parameter controlling logger's operation.

7.2.6.9.1. Record validity time

Performed - Defines period of collected records validity. All records function - collected before are considered invalid and will not be

transmitted.

Data type - Number

Range - Unlimited or 1 ... 240

Default value - Unlimited

Comments - After validity period elapsed the records are not deleted.

There is a possibility of reading them on demand.

7.2.6.9.2. Recipient

Performed

function

- Defines IP address to send Logger's content to.

Data type - Selection list

Range - List of authorized IP addresses

Default value - None

Comments - If the Logger is not in use the parameter should have value

of *None*.

7.2.6.9.3. Recipient's UDP port

Performed

function

Defines UDP port to which logger contens will be sent.

Data type - Number

Range - 1024 ...65535

Default value - 7110

Comments - One has to remember to configure the receiving side's port

driver MTDataProvider to receive on the same port as set

by this parameter.

7.2.6.9.4. Sending in online mode

Performed function

- Defines the logger sending interval if the module is on line mode. The sending must be in advance triggered by a relevant event. If the module goes into hibernation the

triggering has to be reactivated.

Data type - Number Range - 1 ... 250

Default value - 1

Comments - If the module is non-stop on line it will send the logger

content after first triggering event and will keep on sending

logger at intervals defined by this parameter.

7.2.7. Events

Group **Events** defines status change of binary inputs (flags, inputs, outputs, bits) as events. Events are used to trigger recording and flushing the logger along with reporting to **MTSpooler** and sending data and SMS messages.

7.2.7.1. Number of events

Performed - Defines the number of events in Events Table

function

Data type - Number
Range - 0 ... 64
Default value - 0

Comments - If the value is *O*, <u>Events table</u> is not displayed

7.2.7.2. Events table

Idx. - List indexing number

Name - Friendly name of event used in Rules to define the event

triggering the rule processing Max. length 16 characters.

Triggering bit - Address of bit triggering the event

Name from bit list (see bit list in Appendices) or 0 ... 65535

Triggering edge - Event triggering edge

Selection list

0 - > 1

rising edge (default value)

1->0

falling edge

0<->1

any edge

Records to be

sent

Toggles on/off sending records written to logger on

occurring event

Default value: ★ (OFF)

Triggering logger transmission

Toggles sending the logger content on/off on occurring

event

Default value: ★ (OFF)

Update of GPS

position

Toggles GPS positioning on/off on occurring event

Default value: ★ (OFF)

Comments - The event table appears when defined number of events is

greater than zero. The number of positions on the list equals

defined events number.

Entries on the list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in parameters window.

ATTENTION!

Bit states and register values marked with bold in memory map are refreshed at every program cycle. All remaining resources are refreshed only when the module is in high energy consumption state (awake). It is recommended to employ bits marked bold for triggering purposes.

7.2.8. GSM activities

The group contains parameters defining minimum log-in time in GPRS network after receiving data or SMS message.

7.2.8.1. Active after SMS reception

Performed - Defines GSM activity time after receiving of SMS

function(in minutes)Data type- NumberRange- 0 ... 1080

Default value - 0

Comments - Value other than *O* grants extra time for remote access to

the module for e.g. configuration, data read-out etc.

Increasing activity time shortens battery life time!

7.2.8.2. Active after GPRS frame reception

Performed - Defines GSM activity time after receiving of GPRS frame

function (in minutes)

 Data type
 - Number

 Range
 - 0 ... 1080

Default value - 0

Comments - Value other than *O* grants extra time for remote access to

the module for e.g. configuration, data read-out etc.

Increasing activity time shortens battery life time!

7.2.9. Rules

Group Rules contains list of transmission tasks performed in case of fulfillment of defined criteria by internal program. Tasks are divided in two groups:

- SMS sending rules
- Data sending rules

In both cases criteria are defined by employing previously defined **Events**.

7.2.9.1. Sending SMS

Sub-group Sending SMS consists of two parts:

- list of SMS sending rules
- general parameters of all rules

List of SMS sending rules allows max. 32 rules triggering SMS transmission. Entries on the list may be easily added and deleted by using context menu activated by right mouse button click on any position of the list in defined rules window.

The number of rules may be defined by setting Number of SMS sending rules

7.2.9.1.1. SMS validity time

Performed function

Defines validity time of SMS messages

Data type - Number

Range - Unlimited or 1...240

Default value - Unlimited

Comments - If the module cannot send SMS messages (no coverage, no

roaming, exceeded SMS limit) they are kept in the memory and will be dispatched at first convenience. This parameter defines maximum time the message waits for the opportunity to be sent. After defined time the messages are

deleted.

7.2.9.1.2. Number of SMS sending rules

Performed - Defines the number SMS sending rules

function

Data type - Number
Range - 0...32
Default value - 0

Comments

Reducing the rules number does not delete settings of rules until writing the configuration to the module.

7.2.9.1.3. SMS 1...32

Each SMS sending rule on the list is defined by mandatory parameters like recipient, triggering event and the message text. The maximum number of rules is 32.

7.2.9.1.3.1. Triggering event

Performed function

Assigns which one of previously defined event will trigger

sending of a particular text message.

Data type - Selection list

Range - *None* or names of events from the <u>Events table</u>

Default value - None

Comments - To send the SMS message, Events table must have at least

one event defined

7.2.9.1.3.2. Recipient

Performed function

- Assigns a recipient of SMS from defined in Authorized

<u>numbers->Phone</u> list.

Data type - Selection list

Range - None or the name from Phone list

Default value - None

Comments - To send the SMS message, the Authorized numbers->Phone

must have at least one phone number defined

7.2.9.1.3.3. Template

Performed function

Defines a template of SMS message

Data type - Alphanumeric array

Range - 0 ... 255 alphanumeric characters (no diacritical signs)

Default value - 0

Comments - SMS messages Template may contain any string of

characters, except diacritical. It may contain mnemonics dynamically replaced at run-time by values drawn from the module e.g.: time, register or logical state of the bit. The syntax of commands is described in detail in Syntax of commands for reading and writing data by SMS paragraph.

7.2.9.1.3.4. Activity period after login

Performed function

Defines how many minutes after login into GSM network in

order to send SMS the module remains active.

Data type - Number

Range 0 ... 1080

Default value 0

Comments Any value different than *O* ensures prolonged time for

remote access to the module after sending the SMS or for reception of SMS sent to the module. Leaving the O value makes the module to hibernate immediately after sending the SMS. Extending the activity period reduces battery life

time.

7.2.9.2. Sending data

Sub-group Sending consists of two parts:

- list of data sending rules
- general parameters common to all rules on the list

List of data sending rules contains max. 32 rules allowing sending user defined data to appointed IP address. Entries on the list may be easily added by using context menu activated by right mouse button click on any position of the list of rules.

The number of rules may be defined by setting Number of data sending rules parameter.

7.2.9.2.1. Recipient's UDP port

Performed

Assigns UDP port number for transmitted data frames

function

Number Data type

1024 ... 65535 Range

Default value 7110

Comments

One has to remember to configure receiving side's driver to

listen to the same port number.

7.2.9.2.2. Data validity time

Performed

Defines validity time of data, in hours

function
Data type

- Number

Range

- *Unlimited* or 1 ... 240

Default value

Unlimited

Comments

If the module cannot send GPRS data frame (no coverage, no roaming, no GPRS services) the data is stored in module's memory and will be sent at first convenience. This parameter defines max. storage time until deleting the data.

This parameter does not influence the logger.

7.2.9.2.3. Number of data sending rules

Performed

- Defines the n umber of data sending rules

function
Data type

Range

Number0 ... 32

Default value

- O

Comments

Reducing the rules number does not delete settings of rules

until writing the configuration to the module.

7.2.9.2.4. Data 1...32

Each of rules is defined by mandatory parameters as recipient, triggering event and data format. The maximum number of rules is 32.

7.2.9.2.4.1. Triggering event

Performed function

Assigns which one of previously defined events will trigger data frame transmission.

Data type

Selection list

Range

None or a name selected from the Event table

Default value

None

Comments

- In order to send data there must be at least one event

defined in the Event table

7.2.9.2.4.2. Data format

Performed function

Defines type of transmitted data

Data type

Selection list

Range

Status

Frame containing complete information on module's

state

Xway

Frame containing GPS position data for Xway

vehicle localization system

Spooler

Frame reporting to MTSpooler program that is used for remote configuration of battery powered

modules.

Buffer

Frame containing selected registers of the module. This type of frame may be used to communicate

with other MT modules.

Default value Status

Depending on selected frame type some parameters may Comments

become unavailable

7.2.9.2.4.3. Recipient

Performed function

Defines a particular recipient of data previously defined on

<u>Authorized numbers->IP</u> list

Selection list Data type

Range None or the name from IP list

Default value None

Comments In order to send data there must be at least one address

defined on the Authorized numbers->IP list.

This parameter is unavailable when selected Data format is Spooler. In this particular case the recipient is defined by

Sooler IP located in GPRS group parameters.

7.2.9.2.4.4. Activity period after login

Performed function Data type

Range

Defines how long time after GPRS log-in the module remains

active. Number 0...1080

Default value

Comments Value other than *0* grants extra time for remote access to the module for e.g. configuration, data read-out, SMS

reception etc. Increasing activity period shortens battery life time! Leaving it at 0 makes the module hibernate

immediately after performing scheduled tasks.

7.2.9.2.4.5. Address space

Performed function

Defines module's memory space, where data prepared for

transmission reside

Selection list Data type

IREG Range

Analog inputs space (input registers)

HRFG

Internal registers space (holding registers)

Default value *IREG*

This parameter is accessible only when Buffer data format Comments

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.2.9.2.4.6. Buffer start address

Performed - Points out the address of the first register of the array to be

functionsent.Data type- NumberRange- 0 ... 31Default value- 0

Comments - This parameter is accessible only when Buffer data format

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.2.9.2.4.7. Buffer size

Performed - Defines the number of consecutive register to be sent.

function

Data type - Number

Range - 1...32

Default value - 1

Comments - This parameter is accessible only when Buffer <u>data format</u>

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.2.9.2.4.8. Receiver's buffer address in HREG address space

Performed - Defines the address in receiving unit's internal registers (holding registers), where the buffer is going to be

written.

Data type - Number Range - 0...9999

Default value - 96

Comments - This parameter is accessible only when Buffer data format

has been selected. Addresses of module's resources may

be found in Memory map in Appendices.

7.3. Presets

In order to expand module's application areas it is furbished with initial settings for some resources. It is necessary when the module is operating as a pulse counter for measuring devices (e.g. water consumption meter with pulse output), having initial count other than zero. Due to **Presets**, the actual value of (totalizer) register may be equalized with mechanical counter of the device, thus not disturbing the functionality of the system.

In order to set **Presets**, go to menu *Configuration* and select the *Initial settings* option or click the icon on the toolbar.

Presets

The **Presets** icon is active only when the module is connected and selected transmission channel is not the Spooler. Sending data in **Presets** mode is possible only as sending changes. Bear in mind that sending configuration changes result in immediate and irrevocable updating of the resource.

When **Presets** mode is selected all configuration groups disappear from the panel and only parameters that may have initial value set are displayed. For MT-723 module the parameters are Counters CNT1...CNT8.

7.3.1. Counters (CNT1...CNT8)

Name of the - Counter CNT1...CNT8

resource

Data type - Number

Range - -2 147 483 647...2 147 483 647

After inserting new values of the resource the background becomes highlighted yellow. This means that the value has been changed and is selected to be sent to the module.

Parameter	Value
CNT1	-12
CNT2	2147483647
CNT3	-2147483648
CNT4	516
CNT5	214
CNT6	83647
CNT7	-2183647
CNT8	16

8. Maintenance and problem solving

8.1. LED signaling

MT-723 is equipped with six LED indicators reflecting the module state.

- **PWR** LED indicates current Power supply and module's state (low and high energy consumption state called also sleep and activity state)
- ERR LED indicates abnormal states
- **STA** LED indicates GSM/GPRS status (GSM login as well as GPRS login, roaming, and signal level)
- TX LED indicates Data or SMS transmission
- RX LED indicates data or SMS reception
- USB LED indicates USB port state

The current state is signaled by flashes varying in length and number.

8.1.1. PWR LED

Signals emitted by PWR LED identify current power supply and module's state. See the table below.

8.1.2. LED indicators

LED signaling consists of five-second "messages" comprising four basic signals differing by lit time of LED indicators. Tables below display all states signaled.

Legend			
0	LED lit stable		
•	long flash (200ms)		
•	short flash (20ms)		
•	LED off		

ERR LED			
0	critical error		
•	transmission error - SMS or GPRS transmission impossible		
•	missing, defective or blocked SIM card		
$\mathbb{O} \mathbb{O}$	the card requires PIN code		
$\mathbb{O} \mathbb{O} \mathbb{O}$	GSM error		
800	GPRS error		
880	APN login error		
888	wrong PIN		

STA LED		
•	PIN missing in configuration (does not apply for pin-less cards)	
0	PIN received, module not logged in GSM network	
\mathbb{O}	logged in GSM network, very weak signal (< -99 dBi)	
\mathbb{O} \mathbb{O}	logged in GSM network, very weak signal (-9783 dBi)	
\bigcirc \bigcirc \bigcirc	logged in GSM network, good signal (-8167 dBi)	
	logged in GSM network, very good signal (> -65 dBi)	
● ●	logged in foreign GSM network (roaming), very weak signal (< -99 dBi)	
$\mathbb{O} \mathbb{O} \mathbb{O}$	logged in foreign GSM network (roaming), very weak signal (-9783 dBi)	
	logged in foreign GSM network (roaming), good signal (-8167 dBi)	
	logged in foreign GSM network (roaming), very good signal (> -65 dBi)	

TX and RX LEDs	
sending (TX)/receiving (RX) SMS messages	
•	sending (TX)/receiving (RX) GPRS data frame

USB LED		
•	data packet sent via USB port	
0	port in offline state	

See the example of ${\bf STA\ LED}\ \ {\rm signaling\ logging\ in\ GSM/GPRS\ in\ roaming\ with\ very\ good\ signal.}$

8.2. Unblocking the SIM card

Triple insertion of wrong PIN code results in blocking the SIM card. Blocked card renders SMS and data transmission impossible. Blocked SIM card is signaled by **ERR LED**.

In order to unblock the SIM card do the following:

- power the module off
- take the SIM card off
- insert the SIM card to the mobile phone that accepts the SIM issued by your operator
- start the phone and insert the PUK code followed by PIN code
- power the module on
- insert proper PIN into configuration
- power the module off
- place the SIM card in the module
- power the module on

Executing the procedure unblocks the SIM card and enables module's proper operation.

9. Technical parameters

9.1. General

Dimensions (height x width x depth)	80 x 140 x 65 mm
Weight (with batteries)	680 g
Mounting method	2 ø5 mm holes
Operating temperatures	-20°C+55°C
Protection class	IP68

9.2. Modem GSM/GPRS

Modem type		Sierra Wireless AirPrime	
GSM		quad-band (850/900/1800/1900)	
GPRS		Class 10	
Frequency range:			
GSM 850 MHz		Transmitter: from 824 MHz do 849 MHz Receiver: from 869 MHz do 894 MHz	
EGSM 900 MHz		Transmitter: from 880 MHz do 915 MHz Receiver: from 925 MHz do 960 MHz	
DCS 1800 MHz		ansmitter: from 1710 MHz do 1785 MHz Receiver: from 1805 MHz do 1880 MHz	
PCS 1900 MHz		Transmitter: 1850 MHz - 1910 MHz Receiver: 1930 MHz - 1990 MHz	

Transmitter peak power	
GSM 850 MHz/EGSM900 MHz)	33 dBm (2W) – station of class 4
DCS 1800 MHz/PCS1900 MHz)	30 dBm (1W) – station of class 1
Modulation	0,3 GMSK
Channel spacing	200 kHz
Antenna	50 Ω

For modules with serial number lower than 023-011-020-000 manufactured before 2011-05-16:

Modem type	WAVECOM WIRELESS CPU	
GSM	quad-band (850/900/1800/1900)	
GPRS	Class 10	
Frequency range:		
GSM 850 MHz	Transmitter: from 824 MHz do 849 MHz Receiver: from 869 MHz do 894 MHz	
EGSM 900 MHz	Transmitter: from 880 MHz do 915 MHz Receiver: from 925 MHz do 960 MHz	
DCS 1800 MHz	Transmitter: from 1710 MHz do 1785 MHz Receiver: from 1805 MHz do 1880 MHz	
PCS 1900 MHz	Transmitter: 1850 MHz - 1910 MHz Receiver: 1930 MHz - 1990 MHz	
Transmitter peak power		
GSM 850 MHz/EGSM900 MHz)	33 dBm (2W) – station of class 4	
DCS 1800 MHz/PCS1900 MHz)	30 dBm (1W) – station of class 1	
Modulation	0,3 GMSK	
Channel spacing	200 kHz	
Antenna	50 Ω	

9.3. Binary/pulse inputs I1...I6

Contacts polarization	3,0 V
Counting frequency (fill 50%)	250 Hz max.
Minimal pulse length - operating in pulse input mode	0,5 ms
Minimal pulse length - operating in binary input mode	100 ms

9.4. NMOS outputs Q1, Q2

Maximum voltage	30 V
Maximum current	250 mA
Switch off current	<50 μΑ
Resistance	1 Ω

9.5. Analog inputs AN1...AN3

Туре	voltage, differential
Measuring range	0 - 5.0 V
Input resistance	>600 kΩ typically
Resolution	12 bits
Accuracy at 25°C temperature	±0.1 %
Accuracy at full temperature range	±0.3 %

9.6. Power output Vo

Voltage range	05.0V
Resolution	0.1V
Accuracy	2 %
Maximum current	50 mA

9.7. Logger

Memory type	FLASH
Max. records number	10 240
Min. recording time	30 ms

9.8. GPS receiver

Туре	ANTARIS 4
Frequency	L1
Encoding	C/A
Number of channels	16
Accuracy	2.5 m CEP (3.0 m SEP)
Sensitivity	- 148 dBm

9.9. Temperature sensor

Туре	Integrated sensor
Accuracy	±3°C

9.10. Power supply

Acceptable power supply voltage range	7 - 30 V
Mean current consumption in sleep mode (at 12 V)	<250 µA
Mean current consumption with active GSM modem (at 12 V)	25 mA
Maximum peak current when GSM modem is active (at 12 V)	500 mA
Internal battery type	lithium-thionyl chloride
Internal battery nominal voltage (at 2 mA, 20°C)	3.6 V

9.11. Enclosure

Mechanical endurance IK (EN 62262)	IK 08
Electrical isolation	Total isolation
Halogen-less (DIN/VDE 0472, Part 815)	Yes
UV resistance	UL 508
Flammability Class (UL 746 C 5):	UL 94 5V
Glowing rod test (IEC 695-2-1) °C	960
NEMA Standard	NEMA 1, 4X, 6, 6P, 12, 13
Material	Polycarbonate
Material of lid screws	Polyamide
Gasket material	Polyurethane

Dimensions without hanger	
Length	140 mm
Width	80 mm
Height	65 mm

Dimensions with hanger							
Length	174 mm						
Width	80 mm						
Height	70 mm						

9.12. Drawings and dimensions

10. Safety information

10.1. Working environment

When deploying telemetry modules one has to observe and comply to local legislation and regulations. Using the telemetry module in places where it can cause radio noise or other disturbances is strictly prohibited.

10.2. Electronic equipment

Thou most of modern electrical equipment is well RF (Radio Frequency) shielded there is no certainty that radio waves emitted by the telemetry module's antenna may have negative influence on its function.

10.2.1. Heart pacemakers

It is recommended that the distance between the antenna of telemetry module and the Heart Pacemaker is greater than 20 cm.

This distance is recommended by manufacturers of Pacemakers and in full harmony with results of studies conducted independently by Wireless Technology Research.

10.2.2. Hearing aids

In rare cases the signal emitted by the telemetry module's antenna may disturb hearing aids functions. Should that occur, one has to study detailed operating instructions and recommendations for that particular product.

10.2.3. Other medical equipment

Any radio device including the telemetry module may disturb the work of electronic medical equipment.

When there is a need of installing telemetry module in vicinity of medical equipment one has to contact the manufacturer of this equipment in order to make sure that the equipment is adequately protected against interference of radio frequency waves (RF).

10.2.4. RF Marked equipment

The restriction against installing telemetry modules in areas marked as radio frequency (RF) prohibition zones must be unconditionally observed.

10.3. Explosive environment

Installation of telemetry modules in the environment where explosion hazard is present is not permitted. Usually, but not always, these places are marked with warning signs. Where there is no marking do not install telemetry modules at liquid or gas fuels stores, inflammable materials stores, nor places contaminated with metal or wheat dust.

11. Appendices

11.1. SMS commands syntax

MT-723 can send SMS messages including mnemonics replaced with numerical values at the moment of dispatch. It can respond to queries sent via SMS. Bear in mind that the module receives SMS messages only when it is logged in the network.

In the table you will find all available commands and mnemonics for SMS. Bold types represent mandatory commands while italics represent parameters added by user. Square brackets embrace optional elements.

Read commands:

Commands may be used as mnemonics in SMS messages sent as a result of <u>Rules</u> processing.

#BAT	battery voltage
#BTV	battery voltage in format x.xxV
#CNTcounter_number	read counter status
#IRdecimal_register_address	read analog register value (input registers)
#HRdecimal_register_address	read internal register value (holding registers)
#IBdecimal_bit_address	read bit from analog registers space (input registers)
#HBdecimal_bit_address	read bit from internal registers space (holding registers)
#GPST	read GPS position time stamp (UTC)
#GPSD	read GPS position date stamp (UTC)
#GPSP	read GPS position
#SAT	read number satellites
#I binary_input_number	read binary input state
#Qbinary_output_number	read binary output state
#ANanalog_input_number	read analog input register value (does not perform the measurement)
#FLbinary_input_number	read flow register value (does not perform the flow calculation)
#GSM	read signal level
#SN	read serial number
#MOD	read module type
#NAME	read module name
#VER	read module firmware version
#TIME	read module's time
#DATE	read module's date
#IP	read module's current IP address (if not logged to GPRS answer is 0.0.0.0)
#TEMP	read temperature from temperature indicator build-in modem in form [-]xx.xC

Write commands:

#CNTcounter_number=	write new value to counter register (calibration)
#HR decimal_register_address=	write new value to internal register (holding registers)
	write bit value to internal register space (holding registers)
	set binary output (does not work if the output is controlled by other bit than Q1 or Q2)

Special commands:

![password]ACTIVATE HH: MM	this command makes module activate and log into
	GPRS at HH: MM for mm minutes (zeroes at the
	beginning of hour and/or minutes can be omitted).
	The module sends confirmation with date and time

	of activation and module's timestamp. This
	activation does not make module to report to MTSpooler.
	password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]GETIP	read module's current IP address (if not logged to GPRS answer is 0.0.0.0). password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]ONLINE[mmmm]	extends module activity time by <i>mmmm</i> minutes in range 11092. If this parameter is omitted activity is prolonged by 3 minutes. In response module sends time remaining to go asleep. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]CLRLOG	delete all stored in FLASH memory events and logger records. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]CLRCFG	clear modules configuration. All but parameters essential to log module to GSM/GPRS network and for remote configuration are set to default values. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]ENPHONE [tel_number]	add telephone number to authorized telephone numbers. Authorization expires when module enters sleep mode. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.
![password]ENIP[IP_address]	add IP address to authorized IP's (configuration only). Authorization expires when module enters sleep mode. password is password protecting module's configuration. If there is no password protecting module's configuration just omit password parameter and space just after it.

Comments:

Each special SMS command (except for ![password]ONLINE[mmmm<3]) prolongates activity of module by 3 minutes.
All SMS commands, including the incorrect commands, are answered by SMS.

To prevent module from sending a reply to the command put \$\$ sign on beginning of SMS (not applicable to special SMS commands).

All module's responses are preceded by > sign.

If the module cannot interpret the command the response is >ERR.

If attempted write value is out of range the response is > command=ERR (eg. >#CNT1=ERR).

To pass the # sign in SMS type ##.

11.2. Memory map

All accessible from remote resources of MT-723 module were collected in four address spaces: binary inputs, analog inputs, binary outputs and internal registers. Spaces of binary inputs and analog inputs and spaces of binary outputs and internal registers are connected in pairs and contain the same resources. The difference between spaces is in the way of accessing the resources - for binary inputs and outputs are used for accessing individual bits and groups of bits while analog inputs and internal registers address spaces allow access to the full registers.

This difference results in a different way addressing. In the internal registers and analog input address spaces each address is assigned to the each register while the for binary inputs and outputs address spaces are each address corresponds to individual bit. The memory map tables are arranged by their addresses for addressing registers. To calculate the addresses of the individual bits in the binary spaces, use the following equation:

For example, in the MT_BITS register from analog inputs address space (address 6) on position 7 is the KEY_P bit indicating deactivation of reed switch input. Using that formula, you can specify the address of KEY_P bit in binary inputs address space as follows:

$$6 * 16 + 7 = 103$$
.

Bits that are typed in bold in the memory map tables are refreshed in each program cycle, irrespective of fact if modem is on or off. It is recommended to use only those bits for generating events that trigger a measurement or data/SMS sending rule. In case of using those bits for such purposes, expected action of module will be executed only after GSM modem start triggered by other event.

11.2.1. Analog inputs/binary inputs address space

	Analog inputs address space (read only), Modbus RTU functions (2,4)																		
A	ddress								В	its								Nama	December 1
DEC	HEX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Name	Description
0	0x0000													RUN	FS	1	0	PRG_STATE	FS - first scan RUN - program running
1	0x0001	2°	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2 ⁻⁸	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	RTC_FSEC	RTC (UTC time) - second fraction
2	0x0002	2 hour (023) minute (059) second / 2 (029)											RTC_HMS	RTC (UTC time) - RTC time second - youngest bit in RTC_FSEC (address 20)					
3	0x0003			year -	2000 ((0127)		m	onth - 1	l (01	1)		day	- 1 (0.	30)		RTC_YMD	RTC (UTC time) - date
4	0x0004								int32	(LoHi)								ON_TMR	Uptime [s] from connecting to power supply
5	0x0005			1 -	 	1 -	-			1		1 _	1	1 -	1 _	1			
6	0x0006	R T C O K	R T C -C	Z O N E C	HREG IC	C F G O K	G P S IC	AN IC	F L C	K E Y — P	F	SLEEP	V	G P S	G S M	U S B	B A T	MT_BITS	Module status bits BAT = 1 - battery OK USB = 1 - powered from USB GSM = 1 - GSM modem on GPS = 1 - GPS on Vo = 1 - Vo output on SLEEP = 1 - set for 1 cycle after awaking (1 cycle) PF = 1 - set for one cycle after power restore (1 cycle) KEY_P = 1 - reed switch input deactivated (1 cycle) FL_C = 1 - new flow value computed (1 cycle) AN_C = 1 - analog inputs measurement finished (1 cycle) GPS_C = 1 - new data from GPS (1 cycle) CFG_OK = 1 - module configuration OK HREG_C = 1 - remote HREG registers change (1 cycle) ZONE_C = 1 - timezone change (1 cycle) RTC_C = 1 - RTC clock change (1 cycle) RTC_OK = 1 - RTC clock set

7	0x0007											V I B	O P E N	T E M P H i	T E M P L		L B A T C	MT_ALM	Alarm bits LBAT_C = 1 - low battery voltage alarm (1 cycle) TEMP_Lo = 1 - low temperature alarm TEMP_Hi = 1 - high temperature alarm OPEN = 1 - open enclosure alarm VIB = 1 - vibrations alarm
8	0x0008	KEY										16	15	14	13	12	11	BIN	Ix - binary inputs states KEY - reed switch input state
9	0x0009	СТ8	CT7	CT6	CT5	CT4	СТЗ	CT2	CT1	CK8	CK7	CK6	CK5	CK4	СКЗ	CK2	CK1	CLOCK	Timer flags (1 cycle)
10	0x000A	int16 FL1 Flow I1												Flow I1					
11	0x000B								int1	6								FL2	Flow I2
12	0x000C								int1	6								FL3	Flow I3
13	0x000D								int1	6								FL4	Flow I4
14	0x000E								int1	6								FL5	Flow I5
15	0x000F	int16 AN1 Analog input AN											Analog input AN1						
16	0x0010								int1	6								AN2	Analog input AN2
17	0x0011								int1	6								AN3	Analog input AN3
18	0x0012	AN3_ LoLo	AN2_ LoLo	AN1_ LoLo	FL5_ LoLo	FL4_ LoLo	FL3_ LoLo	FL2_ LoLo	FL1_ LoLo	AN3 _Lo	AN2 _Lo	AN1 _Lo	FL5 _Lo	FL4 _Lo	FL3 _Lo	FL2 _Lo	FL1 _Lo	ALM_L	Low alarm bits
19	0x0013	AN3_ HiHi	AN2_ HiHi	AN1_ HiHi	FL5_ HiHi	FL4_ HiHi	FL3_ HiHi	FL2_ HiHi	FL1_ HiHi	AN3 _Hi	AN2 _Hi	AN1 _Hi	FL5 _Hi	FL4 _Hi	FL3 _Hi	FL2 _Hi	FL1 _Hi	ALM_H	High alarm bits
20	0x0014									AN3 _DB	AN2 _DB	AN1 _DB	FL5 _DB	FL4 _DB	FL3 _DB	FL2 _DB	FL1 _DB	ALM_DB	Deadband bits (1 cycle)
21	0x0015								int1	6								VBAT	Battery voltage [mV]
22	0x0016								int1	6								TEMP	Temperature x 0,1 [°C]
23	0x0017																		
24	0x0018	I N - E							S I M IE R R	P I N IE R R	-	-	A P N	G P R S	R O A M I N G	G S M	GSM_STATE	GSM status bits SYG_LEV = GSM signal strength [%] SIM_ERR = 1 - error or no SIM card PIN_ERR = 1 - wrong PIN APN = 1 - module logged into APN GPRS = 1 - GPRS available ROAMING = 1 - module in roaming GSM = 1 - module registered in GSM (range OK)	
25	0x0019	2°	2 ⁻¹	2 ⁻²	2-3	2-4	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷	2-8	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	GPS_FSEC	GPS timestamp (format same as RTC)
26	0x001A		ho	our (0	23)			n	ninute	(059))			secon	d / 2 ((029)		GPS_HMS	
27	0x001B			year -	2000 (0127)			m	onth - 1	I (01	1)		day	- 1 (0	30)		GPS_YMD	

28	0x001C 0x001D		Latitude	(LoHi)					GPS_LAT	Latitude in degrees	
30	0x001E 0x001F		Longitude		GPS_LONG	Longitude in degrees					
32	0x0020		Course over gro		GPS_COG	Course in degrees (0° - N, 90° - E, 180° - S, 270° - W)					
33	0x0021		Spec	ed					GPS_SPD	Speed [km/h]	
34	0x0022	F I X	HDOP (099)	M O V	G E O F	G E O F	-	SAT (015)	GPS_STATE	GPS status SAT - number of satellites (max 15) GEOF = 1 - position outside geofencing border GEOF_C = 1 - position outside geofencing border (1 cycle) MOV = 1 - movement detected (1 cycle) HDOP - accuracy of position measurement (099) FIX = 1 - position found (1 cycle)	
35	0x0023		int1	6					BAT_ACT	Time on battery [h] (rested after battery disconnection)	
36	0x0024		int1	6					BAT_PWR	Counter of consumed energy [mAh]	
37	0x0025		int1	6					VO_ACT Timer of Vo activity [m] (rested after battery disconnection)		
38	0x0026	int16 GPS_ACT Timer of GPS receiver act after battery disconnections.									
39	0x0027		int1	GSM_ACT	Timer of GSM modem activity [m] (rested after battery disconnection)						
40	0x0028		int1	6					GSM_CNT	GSM modem starts counter (rested after battery disconnection)	

11.2.2. Internal registers/binary outputs address space

	Internal registers address space (read/write), Modbus RTU functions (read - 1, 4; write - 5, 6, 15, 16)																		
Ad	dress								Bit	ts								Name	Description
DEC	HEX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	wame	Description
0	0x0000															Q1	Q2	BOUT	Qx - outputs steering bits. If set to 1 output is set high. When read show current output state.
1	0x0001																		Reserved
2	0x0002		1:420/L-11/2												CNT1	32-bit general purpose counter			
3	0x0003		int32(LoHi)													CIVIT			
4	0x0004		int32(LoHi)												CNT2	32-bit general purpose counter			
5	0x0005		IIII.32(LOTII)												CIVIZ				
6	0x0006								int32(l oHi)								CNT3	32-bit general purpose counter
7	0x0007								111132(LOTTI								CIVIO	
8	0x0008								int32(l oHi)								CNT4	32-bit general purpose counter
9	0x0009								111132(LOTTI								CIVIT	
10	0x000A								int32(l oHi)								CNT5	32-bit general purpose counter
11	0x000B								111102(01113	
12	0x000C								int32(l oHi)								CNT6	32-bit general purpose counter
13	0x000D								111132(LOTTI								CIVIO	
14	0x000E								int32(l oHi)								CNT7	32-bit general purpose counter
15	0x000F																	5.417	
16	0x0010								int32(l oHi)								CNT8	32-bit general purpose counter
17	0x0011									20111)								01110	

11.3. Bit list

During its operation **MT-723** is setting a series of binary variables associated with the I/O and module diagnostics. They can be used for trigger events and measurements. **MTManager2.0**, for user convince, have implemented list of predefined bits.

Bit name	Description								
KEY_P	Activation of reed switch input. Bit set for one program cycle - events only on rising edge.								
FL_C	New flow value computed. Bit set for one program cycle - events only on rising edge.								
AN_C	Analog inputs measurement finished. Bit set for one program cycle - events only on rising edge.								
GPS_C	New data from GPS. Bit set for one program cycle - events only on rising edge.								
LBAT_C	Low battery voltage alarm. Bit set for one program cycle - events only on rising edge.								
TEMP_Lo	Low temperature alarm								
TEMP_Hi	High temperature alarm								
OPEN	Open enclosure alarm (1 - enclosure open)								
I1I6	Binary inputs I1I6								
CT1CT8	Flags of CT1CT8 timers. Bit set for one program cycle - events only on rising edge.								
CK1CK8	Flags of CK1CK8 timers. Bit set for one program cycle - events only on rising edge.								
AN1_LoLoAN3_LoLo	Analog inputs alarm bits - LoLo alarm level reached								
AN1_LoAN3_Lo	Analog inputs alarm bits - Lo alarm level reached								
AN1_HiAN3_Hi	Analog inputs alarm bits - Hi alarm level reached								
AN1_HiHiAN3_HiHi	Analog inputs alarm bits - HiHi alarm level reached								
Q1Q2	Binary outputs Q1Q2								

More information about all available bits can be found in Memory map.